These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 12648721)

  • 1. Genetic polymorphism of cyanobacteria under permanent natural stress: a lesson from the "Evolution Canyons".
    Dvornyk V; Nevo E
    Res Microbiol; 2003 Mar; 154(2):79-84. PubMed ID: 12648721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term microclimatic stress causes rapid adaptive radiation of kaiABC clock gene family in a cyanobacterium, Nostoc linckia, from "Evolution Canyons" I and II, Israel.
    Dvornyk V; Vinogradova O; Nevo E
    Proc Natl Acad Sci U S A; 2002 Feb; 99(4):2082-7. PubMed ID: 11842226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome Evolution of the Cyanobacterium Nostoc linckia under Sharp Microclimatic Divergence at "Evolution Canyon," Israel.
    Satish N; Krugman T; Vinogradova ON; Nevo E; Kashi Y
    Microb Ecol; 2001 Oct; 42(3):306-316. PubMed ID: 12024256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of thermal adaptation of Bacillus simplex to the microclimatically contrasting slopes of 'Evolution Canyons' I and II, Israel.
    Sikorski J; Nevo E
    Environ Microbiol; 2007 Mar; 9(3):716-26. PubMed ID: 17298371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and function of a groEL paralog in the thermophilic cyanobacterium Thermosynechococcus elongatus under heat and cold stress.
    Sato S; Ikeuchi M; Nakamoto H
    FEBS Lett; 2008 Oct; 582(23-24):3389-95. PubMed ID: 18786533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism.
    Badger MR; Price GD; Long BM; Woodger FJ
    J Exp Bot; 2006; 57(2):249-65. PubMed ID: 16216846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress in cyanobacteria.
    Latifi A; Ruiz M; Zhang CC
    FEMS Microbiol Rev; 2009 Mar; 33(2):258-78. PubMed ID: 18834454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analyses of the response of cyanobacteria to different stress conditions.
    Castielli O; De la Cerda B; Navarro JA; Hervás M; De la Rosa MA
    FEBS Lett; 2009 Jun; 583(11):1753-8. PubMed ID: 19351534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of restriction-modification system in unicellular and filamentous cyanobacteria.
    Zhao F; Zhang X; Liang C; Wu J; Bao Q; Qin S
    Physiol Genomics; 2006 Feb; 24(3):181-90. PubMed ID: 16368872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at 'Evolution Canyon', Mount Carmel, Israel.
    Yang Z; Zhang T; Bolshoy A; Beharav A; Nevo E
    Mol Ecol; 2009 May; 18(9):2063-75. PubMed ID: 19344351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolutionary forces maintaining a wild polymorphism of Littorina saxatilis: model selection by computer simulations.
    Pérez-Figueroa A; Cruz F; Carvajal-Rodríguez A; Rolán-Alvarez E; Caballero A
    J Evol Biol; 2005 Jan; 18(1):191-202. PubMed ID: 15669976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Phagoresistance of filamentous cyanobacteria clones].
    Mendzhul MI; Lysenko TG; Busakhina IV; Shainskaia OA
    Mikrobiol Z; 2004; 66(1):48-56. PubMed ID: 15104055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon source utilization patterns of Bacillus simplex ecotypes do not reflect their adaptation to ecologically divergent slopes in 'Evolution Canyon', Israel.
    Sikorski J; Pukall R; Stackebrandt E
    FEMS Microbiol Ecol; 2008 Oct; 66(1):38-44. PubMed ID: 18754778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of polymorphism in the changes of the adaptive reaction in domestic animals. II. Polymorphism of the specificity of the regulation of functions and its role in the ecological differentiation of the adaptive reaction.
    Raushenbakh YuO
    Sov Genet; 1974 Feb; 7(11):1404-11. PubMed ID: 4828781
    [No Abstract]   [Full Text] [Related]  

  • 15. Analyses of physiological evolutionary response.
    Bradley TJ; Folk DG
    Physiol Biochem Zool; 2004; 77(1):1-9. PubMed ID: 15057712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generic scan using AFLP markers as a means to assess the role of directional selection in the divergence of sympatric whitefish ecotypes.
    Campbell D; Bernatchez L
    Mol Biol Evol; 2004 May; 21(5):945-56. PubMed ID: 15014172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic diversity in cyanobacterial symbionts of thalloid bryophytes.
    Rikkinen J; Virtanen V
    J Exp Bot; 2008; 59(5):1013-21. PubMed ID: 18325923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable selection pressures across lineages in Trichodesmium and related cyanobacteria based on the heterocyst differentiation protein gene hetR.
    Mes TH; Stal LJ
    Gene; 2005 Feb; 346():163-71. PubMed ID: 15716028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructural stability under high temperature or intensive light stress conferred by a small heat shock protein in cyanobacteria.
    Nitta K; Suzuki N; Honma D; Kaneko Y; Nakamoto H
    FEBS Lett; 2005 Feb; 579(5):1235-42. PubMed ID: 15710419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular signature of selection underlying human adaptations.
    Harris EE; Meyer D
    Am J Phys Anthropol; 2006; Suppl 43():89-130. PubMed ID: 17103426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.