BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 12649189)

  • 1. Theoretical analysis of antibody targeting of tumor spheroids: importance of dosage for penetration, and affinity for retention.
    Graff CP; Wittrup KD
    Cancer Res; 2003 Mar; 63(6):1288-96. PubMed ID: 12649189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicted and observed effects of antibody affinity and antigen density on monoclonal antibody uptake in solid tumors.
    Sung C; Shockley TR; Morrison PF; Dvorak HF; Yarmush ML; Dedrick RL
    Cancer Res; 1992 Jan; 52(2):377-84. PubMed ID: 1728409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a "binding site barrier".
    van Osdol W; Fujimori K; Weinstein JN
    Cancer Res; 1991 Sep; 51(18):4776-84. PubMed ID: 1893370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules.
    Adams GP; Schier R; McCall AM; Simmons HH; Horak EM; Alpaugh RK; Marks JD; Weiner LM
    Cancer Res; 2001 Jun; 61(12):4750-5. PubMed ID: 11406547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of affinity and antigen density on antibody localization in a modifiable tumor targeting model.
    Zuckier LS; Berkowitz EZ; Sattenberg RJ; Zhao QH; Deng HF; Scharff MD
    Cancer Res; 2000 Dec; 60(24):7008-13. PubMed ID: 11156404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake, penetration, and binding of monoclonal antibodies with increasing affinity in human osteosarcoma multicell spheroids.
    Hjelstuen MH; Rasch-Halvorsen K; Bruland O; De L Davies C
    Anticancer Res; 1998; 18(5A):3153-61. PubMed ID: 9858878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bivalent interaction upon apparent antibody affinity: experimental confirmation of theory using fluorescence photobleaching and implications for antibody binding assays.
    Kaufman EN; Jain RK
    Cancer Res; 1992 Aug; 52(15):4157-67. PubMed ID: 1638531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model of simultaneous diffusion and binding of antitumor antibodies in multicellular human tumor spheroids.
    McFadden R; Kwok CS
    Cancer Res; 1988 Jul; 48(14):4032-7. PubMed ID: 3383196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacokinetic analysis of the perivascular distribution of bifunctional antibodies and haptens: comparison with experimental data.
    Baxter LT; Yuan F; Jain RK
    Cancer Res; 1992 Oct; 52(20):5838-44. PubMed ID: 1394212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mono and bivalent binding of a scFv and covalent diabody to murine laminin-1 using radioiodinated proteins and SPR measurements: effects on tissue retention in vivo.
    Huang BC; Davern S; Kennel SJ
    J Immunol Methods; 2006 Jun; 313(1-2):149-60. PubMed ID: 16750217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dose, molecular size, affinity, and protein binding on tumor uptake of antibody or ligand: a biomathematical model.
    Thomas GD; Chappell MJ; Dykes PW; Ramsden DB; Godfrey KR; Ellis JR; Bradwell AR
    Cancer Res; 1989 Jun; 49(12):3290-6. PubMed ID: 2720683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved tumor targeting by combined use of two antitenascin antibodies.
    Petronzelli F; Pelliccia A; Anastasi AM; D'Alessio V; Albertoni C; Rosi A; Leoni B; De Angelis C; Paganelli G; Palombo G; Dani M; Carminati P; De Santis R
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7137s-7145s. PubMed ID: 16203813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C.
    Brack SS; Silacci M; Birchler M; Neri D
    Clin Cancer Res; 2006 May; 12(10):3200-8. PubMed ID: 16707621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational model predicts effective delivery of 188-Re-labeled melanin-binding antibody to metastatic melanoma tumors with wide range of melanin concentrations.
    Schweitzer AD; Rakesh V; Revskaya E; Datta A; Casadevall A; Dadachova E
    Melanoma Res; 2007 Oct; 17(5):291-303. PubMed ID: 17885584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier.
    Fujimori K; Covell DG; Fletcher JE; Weinstein JN
    J Nucl Med; 1990 Jul; 31(7):1191-8. PubMed ID: 2362198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of affinity on binding of HER2-targeting Affibody molecules: model experiments in breast cancer spheroids.
    Qvarnström OF; Simonsson M; Carlsson J; Tran TA
    Int J Oncol; 2011 Aug; 39(2):353-9. PubMed ID: 21584491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids.
    Thurber GM; Wittrup KD
    Cancer Res; 2008 May; 68(9):3334-41. PubMed ID: 18451160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Streptavidin distribution in metastatic tumors pretargeted with a biotinylated monoclonal antibody: theoretical and experimental pharmacokinetics.
    Sung C; van Osdol WW; Saga T; Neumann RD; Dedrick RL; Weinstein JN
    Cancer Res; 1994 Apr; 54(8):2166-75. PubMed ID: 8174124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivalency: the hallmark of antibodies used for optimization of tumor targeting by design.
    Deyev SM; Lebedenko EN
    Bioessays; 2008 Sep; 30(9):904-18. PubMed ID: 18693269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dynamical study of antibody-antigen encounter reactions.
    Bongini L; Fanelli D; Piazza F; De Los Rios P; Sanner M; Skoglund U
    Phys Biol; 2007 Oct; 4(3):172-80. PubMed ID: 17928656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.