BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12649310)

  • 1. Ionic mechanisms mediating oscillatory membrane potentials in wide-field retinal amacrine cells.
    Vigh J; Solessio E; Morgans CW; Lasater EM
    J Neurophysiol; 2003 Jul; 90(1):431-43. PubMed ID: 12649310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of voltage-gated ionic channels in cholinergic amacrine cells in the mouse retina.
    Kaneda M; Ito K; Morishima Y; Shigematsu Y; Shimoda Y
    J Neurophysiol; 2007 Jun; 97(6):4225-34. PubMed ID: 17428902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-type calcium channels mediate transmitter release in isolated, wide-field retinal amacrine cells.
    Vigh J; Lasater EM
    Vis Neurosci; 2004; 21(2):129-34. PubMed ID: 15259564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane properties of an unusual intrinsically oscillating, wide-field teleost retinal amacrine cell.
    Solessio E; Vigh J; Cuenca N; Rapp K; Lasater EM
    J Physiol; 2002 Nov; 544(3):831-47. PubMed ID: 12411527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous oscillatory activity of starburst amacrine cells in the mouse retina.
    Petit-Jacques J; Völgyi B; Rudy B; Bloomfield S
    J Neurophysiol; 2005 Sep; 94(3):1770-80. PubMed ID: 15917322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-gated calcium and sodium currents of starburst amacrine cells in the rabbit retina.
    Cohen ED
    Vis Neurosci; 2001; 18(5):799-809. PubMed ID: 11925015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of potassium channels elicits calcium-dependent plateau potentials in suprachiasmatic neurons of the rat.
    Pierson PM; Liu X; Raggenbass M
    Brain Res; 2005 Mar; 1036(1-2):50-9. PubMed ID: 15725401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of various K+ channel blockers on spontaneous glycine release at rat spinal neurons.
    Shoudai K; Nonaka K; Maeda M; Wang ZM; Jeong HJ; Higashi H; Murayama N; Akaike N
    Brain Res; 2007 Jul; 1157():11-22. PubMed ID: 17555723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels.
    Zhang HY; Langeslag M; Voncken M; Roubos EW; Scheenen WJ
    J Neuroendocrinol; 2005 Jan; 17(1):1-9. PubMed ID: 15720469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-gated channels and calcium homeostasis in mammalian rod photoreceptors.
    Cia D; Bordais A; Varela C; Forster V; Sahel JA; Rendon A; Picaud S
    J Neurophysiol; 2005 Mar; 93(3):1468-75. PubMed ID: 15483058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Ca2+-dependent mechanisms regulate L-type Ca2+ current in retinal amacrine cells.
    Tekmen M; Gleason E
    J Neurophysiol; 2010 Oct; 104(4):1849-66. PubMed ID: 20685929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-clamp analysis and computational model of dopaminergic neurons from mouse retina.
    Xiao J; Cai Y; Yen J; Steffen M; Baxter DA; Feigenspan A; Marshak D
    Vis Neurosci; 2004; 21(6):835-49. PubMed ID: 15733339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-voltage-activated calcium channels in Muller cells acutely isolated from tiger salamander retina.
    Welch NC; Wood S; Jollimore C; Stevens K; Kelly ME; Barnes S
    Glia; 2005 Jan; 49(2):259-74. PubMed ID: 15472989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of Ca2+-dependent conductances to membrane potential fluctuations of medullary respiratory neurons of newborn rats in vitro.
    Onimaru H; Ballanyi K; Homma I
    J Physiol; 2003 Nov; 552(Pt 3):727-41. PubMed ID: 12937288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High expression of the R-type voltage-gated Ca2+ channel and its involvement in Ca2+-dependent gonadotropin-releasing hormone release in GT1-7 cells.
    Watanabe M; Sakuma Y; Kato M
    Endocrinology; 2004 May; 145(5):2375-83. PubMed ID: 14736732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium waves in frog melanotrophs are generated by intracellular inactivation of TTX-sensitive membrane Na+ channel.
    Galas L; Garnier M; Lamacz M
    Mol Cell Endocrinol; 2000 Dec; 170(1-2):197-209. PubMed ID: 11162903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium and calcium channels in lymphocytes.
    Lewis RS; Cahalan MD
    Annu Rev Immunol; 1995; 13():623-53. PubMed ID: 7612237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ.
    Rothe T; Jüttner R; Bähring R; Grantyn R
    J Neurobiol; 1999 Feb; 38(2):191-206. PubMed ID: 10022566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatostatin receptor-mediated suppression of gabaergic synaptic transmission in cultured rat retinal amacrine cells.
    Chen W; Ke JB; Wu HJ; Miao Y; Li F; Yang XL; Wang Z
    Neuroscience; 2014 Jul; 273():118-27. PubMed ID: 24846611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bradykinin-induced depolarisation and Ca(2+) influx through voltage-gated Ca(2+) channels in rat submucosal neurons.
    Avemary J; Diener M
    Eur J Pharmacol; 2010 Jun; 635(1-3):87-95. PubMed ID: 20307529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.