These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12649495)

  • 1. Efficient transcription of the EBER2 gene depends on the structural integrity of the RNA.
    Dümpelmann E; Mittendorf H; Benecke BJ
    RNA; 2003 Apr; 9(4):432-42. PubMed ID: 12649495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression.
    Lee N; Yario TA; Gao JS; Steitz JA
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):3221-6. PubMed ID: 26951683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HMGA1-dependent and independent 7SK RNA gene regulatory activity.
    Eilebrecht S; Bécavin C; Léger H; Benecke BJ; Benecke A
    RNA Biol; 2011; 8(1):143-57. PubMed ID: 21282977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomy of an unusual RNA polymerase II promoter containing a downstream TATA element.
    Kasai Y; Chen H; Flint SJ
    Mol Cell Biol; 1992 Jun; 12(6):2884-97. PubMed ID: 1588975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superimposed promoter sequences of the adenoviral E2 early RNA polymerase III and RNA polymerase II transcription units.
    Ellsworth D; Finnen RL; Flint SJ
    J Biol Chem; 2001 Jan; 276(1):827-34. PubMed ID: 11031267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A virus with a mutation in the ICP4-binding site in the L/ST promoter of herpes simplex virus type 1, but not a virus with a mutation in open reading frame P, exhibits cell-type-specific expression of gamma(1)34.5 transcripts and latency-associated transcripts.
    Lee LY; Schaffer PA
    J Virol; 1998 May; 72(5):4250-64. PubMed ID: 9557715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tat functions to stimulate the elongation properties of transcription complexes paused by the duplicated TAR RNA element of human immunodeficiency virus 2.
    García-Martínez LF; Mavankal G; Peters P; Wu-Baer F; Gaynor RB
    J Mol Biol; 1995 Dec; 254(3):350-63. PubMed ID: 7490754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human immunodeficiency virus type 1 TAR element revertant viruses define RNA structures required for efficient viral gene expression and replication.
    Harrich D; Mavankal G; Mette-Snider A; Gaynor RB
    J Virol; 1995 Aug; 69(8):4906-13. PubMed ID: 7609059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function relationships of the initiation complex of HIV-1 reverse transcription: the case of mutant viruses using tRNA(His) as primer.
    Rigourd M; Goldschmidt V; Brulé F; Morrow CD; Ehresmann B; Ehresmann C; Marquet R
    Nucleic Acids Res; 2003 Oct; 31(19):5764-75. PubMed ID: 14500840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional importance of sequence in the stem-loop of a transcription terminator.
    Cheng SW; Lynch EC; Leason KR; Court DL; Shapiro BA; Friedman DI
    Science; 1991 Nov; 254(5035):1205-7. PubMed ID: 1835546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of host RNAs that interact with EBV noncoding RNA EBER2.
    Nanni AV; Lee N
    RNA Biol; 2018; 15(9):1181-1191. PubMed ID: 30176159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA.
    Lee N; Moss WN; Yario TA; Steitz JA
    Cell; 2015 Feb; 160(4):607-618. PubMed ID: 25662012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The requirement for a 5' stem-loop structure in brome mosaic virus replication supports a new model for viral positive-strand RNA initiation.
    Pogue GP; Hall TC
    J Virol; 1992 Feb; 66(2):674-84. PubMed ID: 1731107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of multiple regulatory elements in the control region of the adenovirus type 2-specific VARNA1 gene: fine mapping with linker-scanning mutants.
    Railey JF; Wu GJ
    Mol Cell Biol; 1988 Mar; 8(3):1147-59. PubMed ID: 3367906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative efficiency of utilization of promoter and termination sites by bacteriophage T3 RNA polymerase.
    Sengupta D; Chakravarti D; Maitra U
    J Biol Chem; 1989 Aug; 264(24):14246-55. PubMed ID: 2547791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spacing constraints on reinitiation of paramyxovirus transcription: the gene end U tract acts as a spacer to separate gene end from gene start sites.
    Rassa JC; Wilson GM; Brewer GA; Parks GD
    Virology; 2000 Sep; 274(2):438-49. PubMed ID: 10964786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complementary in vivo and in vitro analyses of the interactions between the cis-acting elements of the rat rDNA promoter.
    Xie WQ; O'Mahony DJ; Smith SD; Rothblum L
    Mol Cell Biochem; 1991 May 29-Jun 12; 104(1-2):127-35. PubMed ID: 1921991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional elongation by purified RNA polymerase II is blocked at the trans-activation-responsive region of human immunodeficiency virus type 1 in vitro.
    Bengal E; Aloni Y
    J Virol; 1991 Sep; 65(9):4910-8. PubMed ID: 1870206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overlapping TATA-dependent and TATA-independent early promoter activities in the baculovirus gp64 envelope fusion protein gene.
    Kogan PH; Chen X; Blissard GW
    J Virol; 1995 Mar; 69(3):1452-61. PubMed ID: 7853477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro formation of short RNA polymerase II transcripts that terminate within the HIV-1 and HIV-2 promoter-proximal downstream regions.
    Toohey MG; Jones KA
    Genes Dev; 1989 Mar; 3(3):265-82. PubMed ID: 2542124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.