These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 12650337)
1. Seasonal dispersal patterns of Frankliniella fusca (Thysanoptera: Thripidae) and tomato spotted wilt virus occurrence in central and eastern North Carolina. Groves RL; Walgenbach JF; Moyer JW; Kennedy GG J Econ Entomol; 2003 Feb; 96(1):1-11. PubMed ID: 12650337 [TBL] [Abstract][Full Text] [Related]
2. Summer weeds as hosts for Frankliniella occidentalis and Frankliniella fusca (Thysanoptera: Thripidae) and as reservoirs for tomato spotted wilt Tospovirus in North Carolina. Kahn ND; Walgenbach JF; Kennedy GG J Econ Entomol; 2005 Dec; 98(6):1810-5. PubMed ID: 16539098 [TBL] [Abstract][Full Text] [Related]
3. Winter weeds as inoculum sources of tomato spotted wilt virus and as reservoirs for its vector, Frankliniella fusca (Thysanoptera: Thripidae) in farmscapes of Georgia. Srinivasan R; Riley D; Diffie S; Shrestha A; Culbreath A Environ Entomol; 2014 Apr; 43(2):410-20. PubMed ID: 24612539 [TBL] [Abstract][Full Text] [Related]
4. Overwintering of Frankliniella fusca (Thysanoptera: Thripidae) on Winter Annual Weeds Infected with Tomato spotted wilt virus and Patterns of Virus Movement Between Susceptible Weed Hosts. Groves RL; Walgenbach JF; Moyer JW; Kennedy GG Phytopathology; 2001 Sep; 91(9):891-9. PubMed ID: 18944235 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Frankliniella fusca and Frankliniella occidentalis (Thysanoptera: Thripidae) as Vectors for a Peanut Strain of Tomato Spotted Wilt Orthotospovirus. Arthurs SP; Heinz KM; Mitchell FL Environ Entomol; 2018 Jun; 47(3):623-628. PubMed ID: 29596611 [TBL] [Abstract][Full Text] [Related]
6. Tactics for management of thrips (Thysanoptera: Thripidae) and tomato spotted wilt virus in tomato. Riley DG; Pappu HR J Econ Entomol; 2004 Oct; 97(5):1648-58. PubMed ID: 15568355 [TBL] [Abstract][Full Text] [Related]
7. Manipulation of Frankliniella occidentalis (Thysanoptera: Thripidae) by Tomato Spotted Wilt Virus (Tospovirus) Via the Host Plant Nutrients to Enhance Its Transmission and Spread. Shalileh S; Ogada PA; Moualeu DP; Poehling HM Environ Entomol; 2016 Oct; 45(5):1235-1242. PubMed ID: 27566527 [TBL] [Abstract][Full Text] [Related]
8. Temperature and precipitation affect seasonal patterns of dispersing tobacco thrips, Frankliniella fusca, and onion thrips, Thrips tabaci (Thysanoptera: Thripidae) caught on sticky traps. Morsello SC; Groves RL; Nault BA; Kennedy GG Environ Entomol; 2008 Feb; 37(1):79-86. PubMed ID: 18348799 [TBL] [Abstract][Full Text] [Related]
9. Three decades of managing Tomato spotted wilt virus in peanut in southeastern United States. Srinivasan R; Abney MR; Culbreath AK; Kemerait RC; Tubbs RS; Monfort WS; Pappu HR Virus Res; 2017 Sep; 241():203-212. PubMed ID: 28549856 [TBL] [Abstract][Full Text] [Related]
10. Impact of early-season thrips management on reducing the risks of spotted wilt virus and suppressing aphid populations in Flue-cured tobacco. McPherson RM; Stephenson MG; Lahue SS; Mullis SW J Econ Entomol; 2005 Feb; 98(1):129-34. PubMed ID: 15765674 [TBL] [Abstract][Full Text] [Related]
11. Effects of Thrips Density, Mode of Inoculation, and Plant Age on Tomato Spotted Wilt Virus Transmission in Peanut Plants. Shrestha A; Sundaraj S; Culbreath AK; Riley DG; Abney MR; Srinivasan R Environ Entomol; 2015 Feb; 44(1):136-43. PubMed ID: 26308816 [TBL] [Abstract][Full Text] [Related]
13. Second generation peanut genotypes resistant to thrips-transmitted tomato spotted wilt virus exhibit tolerance rather than true resistance and differentially affect thrips fitness. Shrestha A; Srinivasan R; Sundaraj S; Culbreath AK; Riley DG J Econ Entomol; 2013 Apr; 106(2):587-96. PubMed ID: 23786043 [TBL] [Abstract][Full Text] [Related]
14. Management of spotted wilt vectored by Frankliniella fusca (Thysanoptera: Thripidae) in Virginia market-type peanut. Hurt CA; Brandenburg RL; Jordan DL; Kennedy GG; Bailey JE J Econ Entomol; 2005 Oct; 98(5):1435-40. PubMed ID: 16334308 [TBL] [Abstract][Full Text] [Related]
15. Epidemiology of spotted wilt disease of peanut caused by Tomato spotted wilt virus in the southeastern U.S. Culbreath AK; Srinivasan R Virus Res; 2011 Aug; 159(2):101-9. PubMed ID: 21620508 [TBL] [Abstract][Full Text] [Related]
16. Bell and banana pepper exhibit mature-plant resistance to tomato spotted wilt Tospovirus transmitted by Frankliniella fusca (Thysanoptera: Thripidae). Beaudoin AL; Kahn ND; Kennedy GG J Econ Entomol; 2009 Feb; 102(1):30-5. PubMed ID: 19253614 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome changes associated with Tomato spotted wilt virus infection in various life stages of its thrips vector, Frankliniella fusca (Hinds). Shrestha A; Champagne DE; Culbreath AK; Rotenberg D; Whitfield AE; Srinivasan R J Gen Virol; 2017 Aug; 98(8):2156-2170. PubMed ID: 28741996 [TBL] [Abstract][Full Text] [Related]
18. The Role of Weed Hosts and Tobacco Thrips, Frankliniella fusca, in the Epidemiology of Tomato spotted wilt virus. Groves RL; Walgenbach JF; Moyer JW; Kennedy GG Plant Dis; 2002 Jun; 86(6):573-582. PubMed ID: 30823226 [TBL] [Abstract][Full Text] [Related]
19. Discovery of Novel Thrips Vector Proteins That Bind to the Viral Attachment Protein of the Plant Bunyavirus Tomato Spotted Wilt Virus. Badillo-Vargas IE; Chen Y; Martin KM; Rotenberg D; Whitfield AE J Virol; 2019 Nov; 93(21):. PubMed ID: 31413126 [TBL] [Abstract][Full Text] [Related]
20. Occurrence of Five Thrips Species on Flue-Cured Tobacco and Impact on Spotted Wilt Disease Incidence in Georgia. McPherson RM; Pappu HR; Jones DC Plant Dis; 1999 Aug; 83(8):765-767. PubMed ID: 30845565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]