These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 12650337)
21. Factors Affecting Population Dynamics of Thrips Vectors of Soybean vein necrosis virus. Keough S; Danielson J; Marshall JM; Lagos-Kutz D; Voegtlin DJ; Srinivasan R; Nachappa P Environ Entomol; 2018 Jun; 47(3):734-740. PubMed ID: 29506040 [TBL] [Abstract][Full Text] [Related]
22. Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector. Schneweis DJ; Whitfield AE; Rotenberg D Virology; 2017 Jan; 500():226-237. PubMed ID: 27835811 [TBL] [Abstract][Full Text] [Related]
23. CONTROL OF VIRAL DISEASES TRANSMITTED IN A PERSISTENT MANNER BY THRIPS IN PEPPER (TOMATO SPOTTED WILT VIRUS). Fanigliulo A; Viggiano A; Gualco A; Crescenzi A Commun Agric Appl Biol Sci; 2014; 79(3):433-7. PubMed ID: 26080477 [TBL] [Abstract][Full Text] [Related]
24. Role of insecticides in reducing thrips injury to plants and incidence of tomato spotted wilt virus in Virginia market-type peanut. Herbert DA; Malone S; Aref S; Brandenburg RL; Jordan DL; Royals BM; Johnson PD J Econ Entomol; 2007 Aug; 100(4):1241-7. PubMed ID: 17849876 [TBL] [Abstract][Full Text] [Related]
25. The Tomato Spotted Wilt Virus Genome Is Processed Differentially in its Plant Host Arachis hypogaea and its Thrips Vector Frankliniella fusca. Fletcher SJ; Shrestha A; Peters JR; Carroll BJ; Srinivasan R; Pappu HR; Mitter N Front Plant Sci; 2016; 7():1349. PubMed ID: 27656190 [TBL] [Abstract][Full Text] [Related]
26. First Report on the Multiplication of Tomato Spotted Wilt Tospovirus in Tobacco Thrips, Frankliniella fusca. Pappu HR; Todd JW; Culbreath AK; Bandla MD; Sherwood JL Plant Dis; 1998 Nov; 82(11):1282. PubMed ID: 30845426 [TBL] [Abstract][Full Text] [Related]
27. Host plant, temperature, and photoperiod effects on ovipositional preference of Frankliniella occidentalis and Frankliniella fusca (Thysanoptera: Thripidae). Chaisuekul C; Riley DG J Econ Entomol; 2005 Dec; 98(6):2107-13. PubMed ID: 16539139 [TBL] [Abstract][Full Text] [Related]
28. Tomato spotted wilt orthotospovirus influences the reproduction of its insect vector, western flower thrips, Frankliniella occidentalis, to facilitate transmission. Wan Y; Hussain S; Merchant A; Xu B; Xie W; Wang S; Zhang Y; Zhou X; Wu Q Pest Manag Sci; 2020 Jul; 76(7):2406-2414. PubMed ID: 32030849 [TBL] [Abstract][Full Text] [Related]
29. Epidemiology of tomato spotted wilt virus in Chrysanthemum morifolium in South Korea and its management using a soil-dwelling predatory mite (Stratiolaelaps scimitus) and essential oils. Yoon JB; Choi SK; Cho IS; Kwon TR; Yang CY; Seo MH; Yoon JY Virus Res; 2020 Nov; 289():198128. PubMed ID: 32846194 [TBL] [Abstract][Full Text] [Related]
30. Detection of Tomato spotted wilt virus in its vector Frankliniella occidentalis by reverse transcription-polymerase chain reaction. Mason G; Roggero P; Tavella L J Virol Methods; 2003 Apr; 109(1):69-73. PubMed ID: 12668270 [TBL] [Abstract][Full Text] [Related]
32. Comparison of transcriptomes of an orthotospovirus vector and non-vector thrips species. Shrestha A; Champagne DE; Culbreath AK; Abney MR; Srinivasan R PLoS One; 2019; 14(10):e0223438. PubMed ID: 31600262 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of Alternatives to an Organophosphate Insecticide with Selected Cultural Practices: Effects on Thrips, Frankliniella fusca, and Incidence of Spotted Wilt in Peanut Farmscapes. Marasigan K; Toews M; Kemerait R; Abney MR; Culbreath A; Srinivasan R J Econ Entomol; 2018 May; 111(3):1030-1041. PubMed ID: 29635299 [TBL] [Abstract][Full Text] [Related]
34. Diversity of Thrips Species and Vectors of Tomato Spotted Wilt Virus in Tomato Production Systems in Kenya. Macharia I; Backhouse D; Skilton R; Ateka E; Wu SB; Njahira M; Maina S; Harvey J J Econ Entomol; 2015 Feb; 108(1):20-8. PubMed ID: 26470099 [TBL] [Abstract][Full Text] [Related]
35. The detection of Tomato spotted wilt virus (TSWV) in individual thrips using real time fluorescent RT-PCR (TaqMan). Boonham N; Smith P; Walsh K; Tame J; Morris J; Spence N; Bennison J; Barker I J Virol Methods; 2002 Mar; 101(1-2):37-48. PubMed ID: 11849682 [TBL] [Abstract][Full Text] [Related]
36. Estimating the Effectiveness of Imidacloprid When Used to Suppress Transmission of Tomato spotted wilt orthotospovirus in Commercial Agriculture. Chappell TM; Kennedy GG J Econ Entomol; 2018 Sep; 111(5):2024-2031. PubMed ID: 29931344 [TBL] [Abstract][Full Text] [Related]
37. Virus-vectoring thrips regulate the excessive multiplication of tomato spotted wilt virus using their antiviral immune responses. Mandal E; Khan F; Kil EJ; Kim Y J Gen Virol; 2024 May; 105(5):. PubMed ID: 38717918 [TBL] [Abstract][Full Text] [Related]
38. Specificity of accumulation and transmission of tomato spotted wilt virus (TSWV) in two genera, Frankliniella and Thrips (Thysanoptera: Thripidae). Inoue T; Sakurai T; Murai T; Maeda T Bull Entomol Res; 2004 Dec; 94(6):501-7. PubMed ID: 15541189 [TBL] [Abstract][Full Text] [Related]
39. Epidemiology and management of tomato spotted wilt in peanut. Culbreath AK; Todd JW; Brown SL Annu Rev Phytopathol; 2003; 41():53-75. PubMed ID: 12704217 [TBL] [Abstract][Full Text] [Related]
40. Explaining loss caused by tomato spotted wilt virus on tobacco with boreal winter weather: a Bayesian approach. Mila AL Phytopathology; 2011 Apr; 101(4):462-9. PubMed ID: 21091184 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]