These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 12650337)
41. Tospoviruses in the Mediterranean area. Turina M; Tavella L; Ciuffo M Adv Virus Res; 2012; 84():403-37. PubMed ID: 22682175 [TBL] [Abstract][Full Text] [Related]
42. Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus. Abe H; Tomitaka Y; Shimoda T; Seo S; Sakurai T; Kugimiya S; Tsuda S; Kobayashi M Plant Cell Physiol; 2012 Jan; 53(1):204-12. PubMed ID: 22180600 [TBL] [Abstract][Full Text] [Related]
43. First Report of Frankliniella fusca as a Vector of Impatiens necrotic spot tospovirus. Naidu RA; Deom CM; Sherwood JL Plant Dis; 2001 Nov; 85(11):1211. PubMed ID: 30823188 [TBL] [Abstract][Full Text] [Related]
44. First Report of Vidalia Onion (Allium cepa) Naturally Infected with Tomato spotted wilt virus and Iris yellow spot virus (Family Bunyaviridae, Genus Tospovirus) in Georgia. Mullis SW; Langston DB; Gitaitis RD; Sherwood JL; Csinos AC; Riley DG; Sparks AN; Torrance RL; Cook MJ Plant Dis; 2004 Nov; 88(11):1285. PubMed ID: 30795333 [TBL] [Abstract][Full Text] [Related]
45. Pest status, molecular evolution, and epigenetic factors derived from the genome assembly of Frankliniella fusca, a thysanopteran phytovirus vector. Catto MA; Labadie PE; Jacobson AL; Kennedy GG; Srinivasan R; Hunt BG BMC Genomics; 2023 Jun; 24(1):343. PubMed ID: 37344773 [TBL] [Abstract][Full Text] [Related]
46. Host plant resistance against tomato spotted wilt virus in peanut (Arachis hypogaea) and its impact on susceptibility to the virus, virus population genetics, and vector feeding behavior and survival. Sundaraj S; Srinivasan R; Culbreath AK; Riley DG; Pappu HR Phytopathology; 2014 Feb; 104(2):202-10. PubMed ID: 24025049 [TBL] [Abstract][Full Text] [Related]
47. Sex-biased proteomic response to tomato spotted wilt virus infection of the salivary glands of Frankliniella occidentalis, the western flower thrips. Rajarapu SP; Ben-Mahmoud S; Benoit JB; Ullman DE; Whitfield AE; Rotenberg D Insect Biochem Mol Biol; 2022 Oct; 149():103843. PubMed ID: 36113709 [TBL] [Abstract][Full Text] [Related]
48. Integration of transcriptomics and network analysis reveals co-expressed genes in Frankliniella occidentalis larval guts that respond to tomato spotted wilt virus infection. Han J; Rotenberg D BMC Genomics; 2021 Nov; 22(1):810. PubMed ID: 34758725 [TBL] [Abstract][Full Text] [Related]
49. Could Broccoli and Cauliflower Influence the Dispersal Dynamics of Western Flower Thrips (Thysanoptera: Thripidae) to Lettuce in the Salinas Valley of California? Joseph SV; Koike ST Environ Entomol; 2021 Aug; 50(4):995-1005. PubMed ID: 34091680 [TBL] [Abstract][Full Text] [Related]
50. A thrips vector of tomato spotted wilt virus responds to tomato acylsugar chemical diversity with reduced oviposition and virus inoculation. Ben-Mahmoud S; Anderson T; Chappell TM; Smeda JR; Mutschler MA; Kennedy GG; De Jong DM; Ullman DE Sci Rep; 2019 Nov; 9(1):17157. PubMed ID: 31748622 [TBL] [Abstract][Full Text] [Related]
51. Monitoring Seasonal Distribution of Thrips Vectors of Soybean Vein Necrosis Virus in Alabama Soybeans. Chitturi A; Conner K; Sikora EJ; Jacobson AL J Econ Entomol; 2018 Dec; 111(6):2562-2569. PubMed ID: 30124887 [TBL] [Abstract][Full Text] [Related]
52. A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis. Whitfield AE; Kumar NK; Rotenberg D; Ullman DE; Wyman EA; Zietlow C; Willis DK; German TL Phytopathology; 2008 Jan; 98(1):45-50. PubMed ID: 18943237 [TBL] [Abstract][Full Text] [Related]
53. Thrips tabaci population genetic structure and polyploidy in relation to competency as a vector of tomato spotted wilt virus. Jacobson AL; Booth W; Vargo EL; Kennedy GG PLoS One; 2013; 8(1):e54484. PubMed ID: 23365671 [TBL] [Abstract][Full Text] [Related]
54. Multiplication of tomato spotted wilt virus in primary cell cultures derived from two thrips species. Nagata T; Storms MM; Goldbach R; Peters D Virus Res; 1997 May; 49(1):59-66. PubMed ID: 9178497 [TBL] [Abstract][Full Text] [Related]
55. The effects of the E3 ubiquitin-protein ligase UBR7 of Shi J; Zhou J; Jiang F; Li Z; Zhu S PeerJ; 2023; 11():e15385. PubMed ID: 37187513 [TBL] [Abstract][Full Text] [Related]
56. First Report of Tomato chlorotic spot virus in Processing Tomatoes in the Dominican Republic. Batuman O; Rojas MR; Almanzar A; Gilbertson RL Plant Dis; 2014 Feb; 98(2):286. PubMed ID: 30708759 [TBL] [Abstract][Full Text] [Related]
57. Reflective mulch and acibenzolar-S-methyl treatments relative to thrips (Thysanoptera: Thripidae) and tomato spotted wilt virus incidence in tomato. Riley DG; Joseph SV; Srinivasan R J Econ Entomol; 2012 Aug; 105(4):1302-10. PubMed ID: 22928310 [TBL] [Abstract][Full Text] [Related]
58. Within-Plant Distribution and Dynamics of Thrips Species (Thysanoptera: Thripidae) in Cotton. Reay-Jones FPF; Greene JK; Herbert DA; Jacobson AL; Kennedy GG; Reisig DD; Roberts PM J Econ Entomol; 2017 Aug; 110(4):1563-1575. PubMed ID: 28475718 [TBL] [Abstract][Full Text] [Related]
59. Incidence of Tomato spotted wilt virus (Bunyaviridae) and Tobacco Thrips in Virginia-Type Peanuts in North Carolina. Garcia LE; Brandenburg RL; Bailey JE Plant Dis; 2000 Apr; 84(4):459-464. PubMed ID: 30841170 [TBL] [Abstract][Full Text] [Related]
60. Variation in Tomato spotted wilt virus titer in Frankliniella occidentalis and its association with frequency of transmission. Rotenberg D; Krishna Kumar NK; Ullman DE; Montero-AstĂșa M; Willis DK; German TL; Whitfield AE Phytopathology; 2009 Apr; 99(4):404-10. PubMed ID: 19271982 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]