These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 12650884)
1. What happens when cardiac Na channel function is compromised? 2. Numerical studies of the vulnerable period in tissue altered by drugs. Starmer CF; Grant AO; Colatsky TJ Cardiovasc Res; 2003 Mar; 57(4):1062-71. PubMed ID: 12650884 [TBL] [Abstract][Full Text] [Related]
2. What happens when cardiac Na channels lose their function? 1--numerical studies of the vulnerable period in tissue expressing mutant channels. Starmer CF; Colatsky TJ; Grant AO Cardiovasc Res; 2003 Jan; 57(1):82-91. PubMed ID: 12504817 [TBL] [Abstract][Full Text] [Related]
3. Ischemic modulation of vulnerable period and the effects of pharmacological treatment of ischemia-induced arrhythmias: a simulation study. Cimponeriu A; Starmer CF; Bezerianos A IEEE Trans Biomed Eng; 2003 Feb; 50(2):168-77. PubMed ID: 12665030 [TBL] [Abstract][Full Text] [Related]
4. Proarrhythmic response to sodium channel blockade. Theoretical model and numerical experiments. Starmer CF; Lastra AA; Nesterenko VV; Grant AO Circulation; 1991 Sep; 84(3):1364-77. PubMed ID: 1653123 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of atrial fibrillation termination by rapidly unbinding Na+ channel blockers: insights from mathematical models and experimental correlates. Comtois P; Sakabe M; Vigmond EJ; Munoz M; Texier A; Shiroshita-Takeshita A; Nattel S Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1489-504. PubMed ID: 18676686 [TBL] [Abstract][Full Text] [Related]
6. Why are some antiarrhythmic drugs proarrhythmic? Cardiac arrhythmia study by bifurcation analysis. Chay TR J Electrocardiol; 1995; 28 Suppl():191-7. PubMed ID: 8656110 [TBL] [Abstract][Full Text] [Related]
7. A proarrhythmic response to sodium channel blockade: modulation of the vulnerable period in guinea pig ventricular myocardium. Nesterenko VV; Lastra AA; Rosenshtraukh LV; Starmer CF J Cardiovasc Pharmacol; 1992 May; 19(5):810-20. PubMed ID: 1381780 [TBL] [Abstract][Full Text] [Related]
8. New aspects of vulnerability in heterogeneous models of ventricular wall and its modulation by loss of cardiac sodium channel function. Kapela A; Tsoukias N; Bezerianos A Med Biol Eng Comput; 2005 May; 43(3):387-94. PubMed ID: 16035228 [TBL] [Abstract][Full Text] [Related]
9. Ionic mechanisms for prolongation of refractoriness and their proarrhythmic and antiarrhythmic correlates. Roden DM Am J Cardiol; 1996 Aug; 78(4A):12-6. PubMed ID: 8780324 [TBL] [Abstract][Full Text] [Related]
10. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias. Starmer CF; Romashko DN; Reddy RS; Zilberter YI; Starobin J; Grant AO; Krinsky VI Circulation; 1995 Aug; 92(3):595-605. PubMed ID: 7634474 [TBL] [Abstract][Full Text] [Related]
11. [New aspects of the molecular effect of anti-arrhythmia agents]. Honerjäger P Herz; 1990 Apr; 15(2):70-8. PubMed ID: 2160907 [TBL] [Abstract][Full Text] [Related]
12. Effects of Na(+) and K(+) channel blockade on vulnerability to and termination of fibrillation in simulated normal cardiac tissue. Qu Z; Weiss JN Am J Physiol Heart Circ Physiol; 2005 Oct; 289(4):H1692-701. PubMed ID: 15937096 [TBL] [Abstract][Full Text] [Related]
13. Ischemia-related subcellular redistribution of sodium channels enhances the proarrhythmic effect of class I antiarrhythmic drugs: a simulation study. Tsumoto K; Ashihara T; Haraguchi R; Nakazawa K; Kurachi Y PLoS One; 2014; 9(10):e109271. PubMed ID: 25279776 [TBL] [Abstract][Full Text] [Related]
14. Drug-induced post-repolarization refractoriness as an antiarrhythmic principle and its underlying mechanism. Franz MR; Gray RA; Karasik P; Moore HJ; Singh SN Europace; 2014 Nov; 16 Suppl 4():iv39-iv45. PubMed ID: 25362169 [TBL] [Abstract][Full Text] [Related]
15. The canine virtual ventricular wall: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis. Benson AP; Aslanidi OV; Zhang H; Holden AV Prog Biophys Mol Biol; 2008; 96(1-3):187-208. PubMed ID: 17915298 [TBL] [Abstract][Full Text] [Related]
16. The cardiac vulnerable period and reentrant arrhythmias: targets of anti- and proarrhythmic processes. Starmer CF Pacing Clin Electrophysiol; 1997 Feb; 20(2 Pt 2):445-54. PubMed ID: 9058848 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of atrial fibrillation termination by pure sodium channel blockade in an ionically-realistic mathematical model. Kneller J; Kalifa J; Zou R; Zaitsev AV; Warren M; Berenfeld O; Vigmond EJ; Leon LJ; Nattel S; Jalife J Circ Res; 2005 Mar; 96(5):e35-47. PubMed ID: 15731458 [TBL] [Abstract][Full Text] [Related]
18. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action. Fredj S; Sampson KJ; Liu H; Kass RS Br J Pharmacol; 2006 May; 148(1):16-24. PubMed ID: 16520744 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms underlying increased right ventricular conduction sensitivity to flecainide challenge. Veeraraghavan R; Poelzing S Cardiovasc Res; 2008 Mar; 77(4):749-56. PubMed ID: 18056761 [TBL] [Abstract][Full Text] [Related]
20. A quantitative analysis of use-dependent ventricular conduction slowing by procainamide in anesthetized dogs. Villemaire C; Savard P; Talajic M; Nattel S Circulation; 1992 Jun; 85(6):2255-66. PubMed ID: 1317275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]