These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1265132)

  • 21. Phytochrome-interacting factors (PIFs) as bridges between environmental signals and the circadian clock: diurnal regulation of growth and development.
    Shin J; Anwer MU; Davis SJ
    Mol Plant; 2013 May; 6(3):592-5. PubMed ID: 23589607
    [No Abstract]   [Full Text] [Related]  

  • 22. Conditional circadian regulation of PHYTOCHROME A gene expression.
    Hall A; Kozma-Bognár L; Tóth R; Nagy F; Millar AJ
    Plant Physiol; 2001 Dec; 127(4):1808-18. PubMed ID: 11743124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromophore topography and secondary structure of 124-kilodalton Avena phytochrome probed by Zn2(+)-induced chromophore modification.
    Sommer D; Song PS
    Biochemistry; 1990 Feb; 29(7):1943-8. PubMed ID: 2184893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular topography of phytochrome as deduced from the tritium-exchange method.
    Hahn TR; Song PS
    Biochemistry; 1982 Mar; 21(6):1394-9. PubMed ID: 6280761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PNZIP is a novel mesophyll-specific cDNA that is regulated by phytochrome and the circadian rhythm and encodes a protein with a leucine zipper motif.
    Zheng CC; Porat R; Lu P; O'Neill SD
    Plant Physiol; 1998 Jan; 116(1):27-35. PubMed ID: 9449833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A photoreversible conformational change in 124 kDa Avena phytochrome.
    Singh BR; Chai YG; Song PS; Lee J; Robinson GW
    Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytochrome and protein phosphorylation.
    Singh BR; Song PS
    Photochem Photobiol; 1990 Jul; 52(1):249-54. PubMed ID: 2204944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional dissection of circadian clock- and phytochrome-regulated transcription of the Arabidopsis CAB2 gene.
    Anderson SL; Kay SA
    Proc Natl Acad Sci U S A; 1995 Feb; 92(5):1500-4. PubMed ID: 7878008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral perturbations and oligomer/monomer formation in 124-kilodalton Avena phytochrome.
    Choi JK; Kim IS; Kwon TI; Parker W; Song PS
    Biochemistry; 1990 Jul; 29(29):6883-91. PubMed ID: 2204422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Attenuation of phytochrome A and B signaling pathways by the Arabidopsis circadian clock.
    Anderson SL; Somers DE; Millar AJ; Hanson K; Chory J; Kay SA
    Plant Cell; 1997 Oct; 9(10):1727-43. PubMed ID: 9368413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photochemistry of high molecular weight phytochrome in vitro.
    Pratt LH
    Photochem Photobiol; 1975; 22(1-2):33-6. PubMed ID: 1187804
    [No Abstract]   [Full Text] [Related]  

  • 32. Phototransformation and dark reversion of phytochrome in deuterium oxide.
    Sarkar HK; Song PS
    Biochemistry; 1981 Jul; 20(15):4315-20. PubMed ID: 6269588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The photoreactions of recombinant phytochrome from the cyanobacterium Synechocystis: a low-temperature UV-Vis and FT-IR spectroscopic study.
    Foerstendorf H; Lamparter T; Hughes J; Gärtner W; Siebert F
    Photochem Photobiol; 2000 May; 71(5):655-61. PubMed ID: 10818798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of synergistic signaling by phytochrome A and cryptochrome1 on circadian clock-regulated catalase expression.
    Zhong HH; Resnick AS; Straume M; Robertson McClung C
    Plant Cell; 1997 Jun; 9(6):947-55. PubMed ID: 9212468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential effects of mutations in the chromophore pocket of recombinant phytochrome on chromoprotein assembly and Pr-to-Pfr photoconversion.
    Remberg A; Schmidt P; Braslavsky SE; Gärtner W; Schaffner K
    Eur J Biochem; 1999 Nov; 266(1):201-8. PubMed ID: 10542065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions between native oat phytochrome and tetrapyrroles.
    Singh BR; Song PS
    Biochim Biophys Acta; 1989 Jun; 996(1-2):62-9. PubMed ID: 2736260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Phytochrome as a photoreceptor in plant photomorphogenesis (author's transl)].
    Kopcewicz J
    Postepy Biochem; 1979; 25(2):211-28. PubMed ID: 504030
    [No Abstract]   [Full Text] [Related]  

  • 38. Time-resolved thermodynamic analysis of the oat phytochrome A phototransformation. A photothermal beam deflection study.
    Michler I; Braslavsky SE
    Photochem Photobiol; 2001 Oct; 74(4):624-35. PubMed ID: 11683044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protonation state and structural changes of the tetrapyrrole chromophore during the Pr --> Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study.
    Kneip C; Hildebrandt P; Schlamann W; Braslavsky SE; Mark F; Schaffner K
    Biochemistry; 1999 Nov; 38(46):15185-92. PubMed ID: 10563801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The natural radiation environment: limitations on the biology of photoreceptors. Phytochrome as a case study.
    Smith H
    Symp Soc Exp Biol; 1983; 36():1-18. PubMed ID: 6399777
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.