These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1265132)

  • 41. [Photoreceptors for plants].
    Kagawa T
    Seikagaku; 2005 Jan; 77(1):20-8. PubMed ID: 15770947
    [No Abstract]   [Full Text] [Related]  

  • 42. The mechanism of rhythmic ethylene production in sorghum. The role of phytochrome B and simulated shading.
    Finlayson SA; Lee IJ; Mullet JE; Morgan PW
    Plant Physiol; 1999 Mar; 119(3):1083-9. PubMed ID: 10069847
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential exposure of aromatic amino acids in the red-light-absorbing and far-red-light-absorbing forms of 124-kDa oat phytochrome.
    Singh BR; Song PS; Eilfeld P; Rüdiger W
    Eur J Biochem; 1989 Oct; 184(3):715-21. PubMed ID: 2806252
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface enhanced resonance Raman scattering (SERRS) as a probe of the structural differences between the Pr and Pfr forms of phytochrome.
    Rospendowski BN; Farrens DL; Cotton TM; Song PS
    FEBS Lett; 1989 Nov; 258(1):1-4. PubMed ID: 2591526
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Difference spectrum distortion in non-homogeneous pigment associations: abnormal phytochrome spectra in vivo.
    Spruit CJ; Spruit HC
    Biochim Biophys Acta; 1972 Sep; 275(3):401-13. PubMed ID: 5070058
    [No Abstract]   [Full Text] [Related]  

  • 46. Potassium flux and leaf movement in Samanea saman. I. Rhythmic movement.
    Satter RL; Geballe GT; Applewhite PB; Galston AW
    J Gen Physiol; 1974 Oct; 64(4):413-30. PubMed ID: 4424264
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins.
    Lamparter T; Michael N
    Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phototransformation of phytochrome in the dark.
    Augusto O; Cilento G; Jung J; Song PS
    Biochem Biophys Res Commun; 1978 Aug; 83(3):963-9. PubMed ID: 708444
    [No Abstract]   [Full Text] [Related]  

  • 49. Biochemical characterization of Arabidopsis wild-type and mutant phytochrome B holoproteins.
    Elich TD; Chory J
    Plant Cell; 1997 Dec; 9(12):2271-80. PubMed ID: 9437866
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fourier transform resonance Raman spectroscopy of phytochrome.
    Hildebrandt P; Hoffmann A; Lindemann P; Heibel G; Braslavsky SE; Schaffner K; Schrader B
    Biochemistry; 1992 Sep; 31(34):7957-62. PubMed ID: 1510982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Resonance Raman study on intact pea phytochrome and its model compounds: evidence for proton migration during the phototransformation.
    Mizutani Y; Tokutomi S; Aoyagi K; Horitsu K; Kitagawa T
    Biochemistry; 1991 Nov; 30(44):10693-700. PubMed ID: 1657153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism?
    Roux SJ
    Photochem Photobiol; 1992 Nov; 56(5):811-4. PubMed ID: 1475326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression.
    Green RM; Tobin EM
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):4176-9. PubMed ID: 10097183
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reaching out of the shade.
    Vandenbussche F; Pierik R; Millenaar FF; Voesenek LA; Van Der Straeten D
    Curr Opin Plant Biol; 2005 Oct; 8(5):462-8. PubMed ID: 16040269
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The system of phytochromes: photobiophysics and photobiochemistry in vivo.
    Sineshchekov VA
    Membr Cell Biol; 1998; 12(5):691-720. PubMed ID: 10379648
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phytochrome Effects in the Nyctinastic Leaf Movements of Albizzia julibrissin and Some Other Legumes.
    Hillman WS; Koukkari WL
    Plant Physiol; 1967 Oct; 42(10):1413-8. PubMed ID: 16656671
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phototransformation of pea phytochrome A induces an increase in alpha-helical folding of the apoprotein: comparison with a monocot phytochrome A and CD analysis by different methods.
    Deforce L; Tokutomi S; Song PS
    Biochemistry; 1994 Apr; 33(16):4918-22. PubMed ID: 8161552
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Light-dependent dimerisation in the N-terminal sensory module of cyanobacterial phytochrome 1.
    Strauss HM; Schmieder P; Hughes J
    FEBS Lett; 2005 Jul; 579(18):3970-4. PubMed ID: 16004995
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The out of phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis.
    Salomé PA; Michael TP; Kearns EV; Fett-Neto AG; Sharrock RA; McClung CR
    Plant Physiol; 2002 Aug; 129(4):1674-85. PubMed ID: 12177480
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enantiodifferential approach for the detection of the target membrane protein of the jasmonate glycoside that controls the leaf movement of Albizzia saman.
    Nakamura Y; Miyatake R; Ueda M
    Angew Chem Int Ed Engl; 2008; 47(38):7289-92. PubMed ID: 18683266
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.