BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 12651324)

  • 1. Potential errors in measurement of nonuniform sap flow using heat dissipation probes.
    Clearwater MJ; Meinzer FC; Andrade JL; Goldstein G; Holbrook NM
    Tree Physiol; 1999 Aug; 19(10):681-687. PubMed ID: 12651324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.
    Pausch RC; Grote EE; Dawson TE
    Tree Physiol; 2000 Mar; 20(4):217-227. PubMed ID: 12651458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees.
    Bush SE; Hultine KR; Sperry JS; Ehleringer JR
    Tree Physiol; 2010 Dec; 30(12):1545-54. PubMed ID: 21112973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactive xylem can explain differences in calibration factors for thermal dissipation probe sap flow measurements.
    Paudel I; Kanety T; Cohen S
    Tree Physiol; 2013 Sep; 33(9):986-1001. PubMed ID: 24128850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient thermal dissipation method for xylem sap flow measurement: implementation with a single probe.
    Do FC; Isarangkool Na Ayutthaya S; Rocheteau A
    Tree Physiol; 2011 Apr; 31(4):369-80. PubMed ID: 21498407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.
    James SA; Clearwater MJ; Meinzer FC; Goldstein G
    Tree Physiol; 2002 Mar; 22(4):277-83. PubMed ID: 11874724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-species test and calibration of an improved transient thermal dissipation system of sap flow measurement with a single probe.
    Nhean S; Isarangkool Na Ayutthaya S; Rocheteau A; Do FC
    Tree Physiol; 2019 Jun; 39(6):1061-1070. PubMed ID: 30865277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.
    Wullschleger SD; King AW
    Tree Physiol; 2000 Apr; 20(8):511-518. PubMed ID: 12651431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements.
    Chen X; Miller GR; Rubin Y; Baldocchi DD
    Tree Physiol; 2012 Dec; 32(12):1458-70. PubMed ID: 23135737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alternative method to estimate zero flow temperature differences for Granier's thermal dissipation technique.
    Regalado CM; Ritter A
    Tree Physiol; 2007 Aug; 27(8):1093-102. PubMed ID: 17472936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient thermal dissipation method of xylem sap flow measurement: multi-species calibration and field evaluation.
    Isarangkool Na Ayutthaya S; Do FC; Pannengpetch K; Junjittakarn J; Maeght JL; Rocheteau A; Cochard H
    Tree Physiol; 2010 Jan; 30(1):139-48. PubMed ID: 19864260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use.
    Ford CR; McGuire MA; Mitchell RJ; Teskey RO
    Tree Physiol; 2004 Mar; 24(3):241-9. PubMed ID: 14704134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of daily water use estimates derived from constant-heat sap-flow probe values and gravimetric measurements in pot-grown saplings.
    McCulloh KA; Winter K; Meinzer FC; Garcia M; Aranda J; Lachenbruch B
    Tree Physiol; 2007 Sep; 27(9):1355-60. PubMed ID: 17545135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest.
    Shinohara Y; Tsuruta K; Ogura A; Noto F; Komatsu H; Otsuki K; Maruyama T
    Tree Physiol; 2013 May; 33(5):550-8. PubMed ID: 23640874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 1. Field observations and possible remedies.
    Do F; Rocheteau A
    Tree Physiol; 2002 Jun; 22(9):641-8. PubMed ID: 12069920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of sap flow estimated by the compensation heat pulse method in olive, plum and orange trees: relationships with xylem anatomy.
    Fernández JE; Durán PJ; Palomo MJ; Diaz-Espejo A; Chamorro V; Girón IF
    Tree Physiol; 2006 Jun; 26(6):719-28. PubMed ID: 16510387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors.
    Nadezhdina N; Cermák J; Ceulemans R
    Tree Physiol; 2002 Sep; 22(13):907-18. PubMed ID: 12204847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements.
    Poyatos R; Cermák J; Llorens P
    Tree Physiol; 2007 Apr; 27(4):537-48. PubMed ID: 17241996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray computed microtomography characterizes the wound effect that causes sap flow underestimation by thermal dissipation sensors.
    Marañón-Jiménez S; Van den Bulcke J; Piayda A; Van Acker J; Cuntz M; Rebmann C; Steppe K
    Tree Physiol; 2018 Feb; 38(2):287-301. PubMed ID: 28981912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.