BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 12651324)

  • 21. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.
    Gebauer T; Horna V; Leuschner C
    Tree Physiol; 2008 Dec; 28(12):1821-30. PubMed ID: 19193565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calibration of Granier-Type (TDP) Sap Flow Probes by a High Precision Electronic Potometer.
    Pasqualotto G; Carraro V; Menardi R; Anfodillo T
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31137901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of tissue heat balance- and thermal dissipation-derived sap flow measurements in ring-porous oaks and a pine.
    Renninger HJ; Schäfer KV
    Front Plant Sci; 2012; 3():103. PubMed ID: 22661978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 2. Advantages and calibration of a noncontinuous heating system.
    Do F; Rocheteau A
    Tree Physiol; 2002 Jun; 22(9):649-54. PubMed ID: 12069921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Adaptability of Granier empirical formula in sap flow measurement of Populus tomentosa based on whole tree weighing method].
    Ma YJ; Wu PF; Wang X; Zhang JS; Yin CJ; Ma CM
    Ying Yong Sheng Tai Xue Bao; 2020 May; 31(5):1518-1524. PubMed ID: 32530229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems.
    Clearwater MJ; Luo Z; Mazzeo M; Dichio B
    Plant Cell Environ; 2009 Dec; 32(12):1652-63. PubMed ID: 19671100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Application of thermal dissipation probe in the study of Bambusa chungii sap flow].
    Zhao P; Mei TT; Ni GY; Yu MH; Zeng XP
    Ying Yong Sheng Tai Xue Bao; 2012 Apr; 23(4):979-84. PubMed ID: 22803463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Verification of sap flow characteristics and measurement errors of
    Liu Y; Zhang H; Ma C; Liu B; Ding C
    Front Plant Sci; 2022; 13():946804. PubMed ID: 36119577
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Axial and radial water transport and internal water storage in tropical forest canopy trees.
    James SA; Meinzer FC; Goldstein G; Woodruff D; Jones T; Restom T; Mejia M; Clearwater M; Campanello P
    Oecologia; 2003 Jan; 134(1):37-45. PubMed ID: 12647177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel, cyclic heat dissipation method for the correction of natural temperature gradients in sap flow measurements. Part 1. Theory and application.
    Lubczynski MW; Chavarro-Rincon D; Roy J
    Tree Physiol; 2012 Jul; 32(7):894-912. PubMed ID: 22611074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radial profiles of sap flow with increasing tree size in maritime pine.
    Delzon S; Sartore M; Granier A; Loustau D
    Tree Physiol; 2004 Nov; 24(11):1285-93. PubMed ID: 15339738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variability with xylem depth in sap flow in trunks and branches of mature olive trees.
    Nadezhdina N; Nadezhdin V; Ferreira MI; Pitacco A
    Tree Physiol; 2007 Jan; 27(1):105-13. PubMed ID: 17169912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An empirical study of the wound effect on sap flux density measured with thermal dissipation probes.
    Wiedemann A; Marañón-Jiménez S; Rebmann C; Herbst M; Cuntz M
    Tree Physiol; 2016 Dec; 36(12):1471-1484. PubMed ID: 27587487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sap flow characteristics of neotropical mangroves in flooded and drained soils.
    Krauss KW; Young PJ; Chambers JL; Doyle TW; Twilley RR
    Tree Physiol; 2007 May; 27(5):775-83. PubMed ID: 17267368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use.
    Zhao H; Yang S; Guo X; Peng C; Gu X; Deng C; Chen L
    Tree Physiol; 2018 Feb; 38(2):276-286. PubMed ID: 29346677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of heat pulse and deuterium tracing techniques for estimating sap flow in Eucalyptus grandis trees.
    Kalma SJ; Thorburn PJ; Dunn GM
    Tree Physiol; 1998 Oct; 18(10):697-705. PubMed ID: 12651419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands.
    Jiménez MS; Nadezhdina N; Cermák J; Morales D
    Tree Physiol; 2000 Nov; 20(17):1149-1156. PubMed ID: 12651490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparing ∆T
    Rabbel I; Diekkrüger B; Voigt H; Neuwirth B
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27916949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The importance of conduction versus convection in heat pulse sap flow methods.
    Forster MA
    Tree Physiol; 2020 May; 40(5):683-694. PubMed ID: 32031660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees.
    Berdanier AB; Miniat CF; Clark JS
    Tree Physiol; 2016 Aug; 36(8):932-41. PubMed ID: 27126230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.