These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 12651324)

  • 41. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings.
    Bleby TM; Burgess SSO; Adams MA
    Funct Plant Biol; 2004 Jul; 31(6):645-658. PubMed ID: 32688936
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Sap flow characteristics of Quercus liaotungensis in response to sapwood area and soil moisture in the loess hilly region, China].
    Lyu JL; He QY; Yan MJ; Li GQ; Du S
    Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):725-731. PubMed ID: 29722212
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.
    Vandegehuchte MW; Steppe K
    New Phytol; 2012 Oct; 196(1):306-317. PubMed ID: 22816502
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters.
    Sperling O; Shapira O; Cohen S; Tripler E; Schwartz A; Lazarovitch N
    Tree Physiol; 2012 Sep; 32(9):1171-8. PubMed ID: 22887479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Influence of measurement position on calculating pear tree stem sap flow].
    Sun H; Kang SO; Gong D
    Ying Yong Sheng Tai Xue Bao; 2006 Nov; 17(11):2024-8. PubMed ID: 17269320
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Measurement accuracy of granier calibration based on transpiration of Platycladus orientalis].
    Liu QX; Meng P; Zhang JS; Gao J; Sun SJ; Jia CR
    Ying Yong Sheng Tai Xue Bao; 2012 Jun; 23(6):1490-4. PubMed ID: 22937635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A single-probe heat pulse method for estimating sap velocity in trees.
    López-Bernal Á; Testi L; Villalobos FJ
    New Phytol; 2017 Oct; 216(1):321-329. PubMed ID: 28722117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Application of three heat pulse technique-based methods to determine the stem sap flow].
    Wang S; Fan J
    Ying Yong Sheng Tai Xue Bao; 2015 Aug; 26(8):2244-52. PubMed ID: 26685585
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatial sap flow and xylem anatomical characteristics in olive trees under different irrigation regimes.
    López-Bernal Á; Alcántara E; Testi L; Villalobos FJ
    Tree Physiol; 2010 Dec; 30(12):1536-44. PubMed ID: 21081652
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Water relations in silver birch during springtime: How is sap pressurised?
    Hölttä T; Dominguez Carrasco MDR; Salmon Y; Aalto J; Vanhatalo A; Bäck J; Lintunen A
    Plant Biol (Stuttg); 2018 Sep; 20(5):834-847. PubMed ID: 29732663
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of stem temperature changes on heat pulse sap flux density measurements.
    Vandegehuchte MW; Burgess SS; Downey A; Steppe K
    Tree Physiol; 2015 Apr; 35(4):346-53. PubMed ID: 25145698
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits.
    Köcher P; Horna V; Leuschner C
    Tree Physiol; 2013 Aug; 33(8):817-32. PubMed ID: 23999137
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Characteristics of dominant tree species stem sap flow and their relationships with environmental factors in a mixed conifer-broadleaf forest in Dinghushan, Guangdong Province of South China].
    Huang DW; Zhang DQ; Zhou GY; Liu SZ; Otieno D; Li YL
    Ying Yong Sheng Tai Xue Bao; 2012 May; 23(5):1159-66. PubMed ID: 22919822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stem water transport of Lithocarpus edulis, an evergreen oak with radial-porous wood.
    Hirose S; Kume A; Takeuchi S; Utsumi Y; Otsuki K; Ogawa S
    Tree Physiol; 2005 Feb; 25(2):221-8. PubMed ID: 15574403
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sap-flux density measurement methods: working principles and applicability.
    Vandegehuchte MW; Steppe K
    Funct Plant Biol; 2013 Apr; 40(3):213-223. PubMed ID: 32481101
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions.
    Lu P; Müller WJ; Chacko EK
    Tree Physiol; 2000 May; 20(10):683-692. PubMed ID: 12651518
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diurnal and seasonal variability in radial distribution of sap flux density: Implications for estimating stand transpiration.
    Fiora A; Cescatti A
    Tree Physiol; 2006 Sep; 26(9):1217-25. PubMed ID: 16740497
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Limitations of a compensation heat pulse velocity system at low sap flow: implications for measurements at night and in shaded trees.
    Becker P
    Tree Physiol; 1998 Mar; 18(3):177-184. PubMed ID: 12651387
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Corrigendum to: Sap-flux density measurement methods: working principles and applicability.
    Vandegehuchte MW; Steppe K
    Funct Plant Biol; 2013 Oct; 40(10):1088. PubMed ID: 32481176
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the heat-pulse method for the measurement of apparent sap velocity in stems.
    Stone JF; Shirazi GA
    Planta; 1975 Jan; 122(2):169-77. PubMed ID: 24435966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.