These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12651342)

  • 1. Whole-tree transpiration and water-use partitioning between Eucalyptus nitens and Acacia dealbata weeds in a short-rotation plantation in northeastern Tasmania.
    Hunt MA; Beadle CL
    Tree Physiol; 1998; 18(8_9):557-563. PubMed ID: 12651342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measured and predicted changes in tree and stand water use following high-intensity thinning of an 8-year-old Eucalyptus nitens plantation.
    Medhurst JL; Battaglia M; Beadle CL
    Tree Physiol; 2002 Aug; 22(11):775-84. PubMed ID: 12184981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.
    Wullschleger SD; King AW
    Tree Physiol; 2000 Apr; 20(8):511-518. PubMed ID: 12651431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest.
    Vertessy RA; Benyon RG; O'Sullivan SK; Gribben PR
    Tree Physiol; 1995 Sep; 15(9):559-67. PubMed ID: 14965913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.
    Pausch RC; Grote EE; Dawson TE
    Tree Physiol; 2000 Mar; 20(4):217-227. PubMed ID: 12651458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.
    Wright TE; Tausz M; Kasel S; Volkova L; Merchant A; Bennett LT
    Tree Physiol; 2012 Mar; 32(3):280-93. PubMed ID: 22367763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.
    Moore GW; Bond BJ; Jones JA; Phillips N; Meinzer FC
    Tree Physiol; 2004 May; 24(5):481-91. PubMed ID: 14996653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and carbon allocation in monocultures and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil.
    Nouvellon Y; Laclau JP; Epron D; Le Maire G; Bonnefond JM; Gonçalves JL; Bouillet JP
    Tree Physiol; 2012 Jun; 32(6):680-95. PubMed ID: 22588515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.
    Simonin K; Kolb TE; Montes-Helu M; Koch GW
    Tree Physiol; 2006 Apr; 26(4):493-503. PubMed ID: 16414928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed.
    Kumagai T; Aoki S; Shimizu T; Otsuki K
    Tree Physiol; 2007 Feb; 27(2):161-8. PubMed ID: 17241959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of heat pulse and deuterium tracing techniques for estimating sap flow in Eucalyptus grandis trees.
    Kalma SJ; Thorburn PJ; Dunn GM
    Tree Physiol; 1998 Oct; 18(10):697-705. PubMed ID: 12651419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does leaf water efficiency vary among eucalypts in water-limited environments?
    Hatton T; Reece P; Taylor P; McEwan K
    Tree Physiol; 1998; 18(8_9):529-536. PubMed ID: 12651339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal variation of microfibril angle in Eucalyptus nitens grown in different irrigation regimes.
    Wimmer R; Downes GM; Evans R
    Tree Physiol; 2002 May; 22(7):449-57. PubMed ID: 11986048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transpiration characteristics of a rubber plantation in central Cambodia.
    Kobayashi N; Kumagai T; Miyazawa Y; Matsumoto K; Tateishi M; Lim TK; Mudd RG; Ziegler AD; Giambelluca TW; Yin S
    Tree Physiol; 2014 Mar; 34(3):285-301. PubMed ID: 24646689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radial profiles of sap flow with increasing tree size in maritime pine.
    Delzon S; Sartore M; Granier A; Loustau D
    Tree Physiol; 2004 Nov; 24(11):1285-93. PubMed ID: 15339738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced transpiration in response to wind effects at the edge of a blue gum (Eucalyptus globulus) plantation.
    Taylor PJ; Nuberg IK; Hatton TJ
    Tree Physiol; 2001 Apr; 21(6):403-8. PubMed ID: 11282580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal and seasonal variability in radial distribution of sap flux density: Implications for estimating stand transpiration.
    Fiora A; Cescatti A
    Tree Physiol; 2006 Sep; 26(9):1217-25. PubMed ID: 16740497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements.
    Poyatos R; Cermák J; Llorens P
    Tree Physiol; 2007 Apr; 27(4):537-48. PubMed ID: 17241996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of sap flow in mountain ash (Eucalyptus regnans) forests of different age.
    Dunn GM; Connor DJ
    Tree Physiol; 1993 Dec; 13(4):321-36. PubMed ID: 14969989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of intense disturbance on the structure and composition of wet-eucalypt forests: A case study from the Tasmanian 2016 wildfires.
    Lunn TJ; Gerwin M; Buettel JC; Brook BW
    PLoS One; 2018; 13(7):e0200905. PubMed ID: 30028860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.