These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 12651349)
1. Photosynthesis and photoprotection in Quercus ilex resprouts after fire. Fleck I; Hogan KP; Llorens L; Abadía A; Aranda X Tree Physiol; 1998; 18(8_9):607-614. PubMed ID: 12651349 [TBL] [Abstract][Full Text] [Related]
2. Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought. Peña-Rojas K; Aranda X; Fleck I Tree Physiol; 2004 Jul; 24(7):813-22. PubMed ID: 15123453 [TBL] [Abstract][Full Text] [Related]
3. Stomatal patchiness in the Mediterranean holm oak (Quercus ilex L.) under water stress in the nursery and in the forest. Guàrdia M; Fernàndez J; Elena G; Fleck I Tree Physiol; 2012 Jul; 32(7):829-38. PubMed ID: 22539636 [TBL] [Abstract][Full Text] [Related]
4. Variations in Quercus ilex chloroplast pigment content during summer stress: involvement in photoprotection according to principal component analysis. Llorens L; Aranda X; Abadía A; Fleck I Funct Plant Biol; 2002 Jan; 29(1):81-88. PubMed ID: 32689454 [TBL] [Abstract][Full Text] [Related]
5. Carbon isotope discrimination in Quercus ilex resprouts after fire and tree-fell. Fleck I; Grau D; Sanjosé M; Vidal D Oecologia; 1996 Feb; 105(3):286-292. PubMed ID: 28307100 [TBL] [Abstract][Full Text] [Related]
6. Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp. ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula. Corcuera L; Morales F; Abadía A; Gil-Pelegrín E Tree Physiol; 2005 May; 25(5):599-608. PubMed ID: 15741152 [TBL] [Abstract][Full Text] [Related]
7. [Photosynthetic characteristics and photoprotective mechanisms during leaf development of soybean plants grown in the field]. Jiang CD; Gao HY; Zou Q; Jiang GM Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Aug; 30(4):428-34. PubMed ID: 15627692 [TBL] [Abstract][Full Text] [Related]
8. Diurnal changes in photoprotective mechanisms in leaves of cork oak (Quercus suber) during summer. Faria T; García-Plazaola JI; Abadía A; Cerasoli S; Pereira JS; Chaves MM Tree Physiol; 1996; 16(1_2):115-123. PubMed ID: 14871754 [TBL] [Abstract][Full Text] [Related]
9. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Vaz M; Pereira JS; Gazarini LC; David TS; David JS; Rodrigues A; Maroco J; Chaves MM Tree Physiol; 2010 Aug; 30(8):946-56. PubMed ID: 20571151 [TBL] [Abstract][Full Text] [Related]
10. Photosynthetic, hydraulic and biomechanical responses of Juglans californica shoots to wildfire. Utsumi Y; Bobich EG; Ewers FW Oecologia; 2010 Oct; 164(2):331-8. PubMed ID: 20496153 [TBL] [Abstract][Full Text] [Related]
11. Operation of the xanthophyll cycle and degradation of D1 protein in the inducible CAM plant, Talinum triangulare, under water deficit. Pieters AJ; Tezara W; Herrera A Ann Bot; 2003 Sep; 92(3):393-9. PubMed ID: 12881404 [TBL] [Abstract][Full Text] [Related]
12. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Niinemets U ; Kull O Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337 [TBL] [Abstract][Full Text] [Related]
13. Stimulated photosynthesis of regrowth after fire in coastal scrub vegetation: increased water or nutrient availability? Rogers EIE; Mehnaz KR; Ellsworth DS Tree Physiol; 2024 Aug; 44(8):. PubMed ID: 38959858 [TBL] [Abstract][Full Text] [Related]
14. Leaf morphology, photochemistry and water status changes in resprouting Quercus ilex during drought. Peña-Rojas K; Aranda X; Joffre R; Fleck I Funct Plant Biol; 2005 Apr; 32(2):117-130. PubMed ID: 32689116 [TBL] [Abstract][Full Text] [Related]
15. Size-dependent enhancement of water relations during post-fire resprouting. Schafer JL; Breslow BP; Hollingsworth SN; Hohmann MG; Hoffmann WA Tree Physiol; 2014 Apr; 34(4):404-14. PubMed ID: 24682534 [TBL] [Abstract][Full Text] [Related]
16. Photoinhibition, carotenoid composition and the co-regulation of photochemical and non-photochemical quenching in neotropical savanna trees. Franco AC; Matsubara S; Orthen B Tree Physiol; 2007 May; 27(5):717-25. PubMed ID: 17267362 [TBL] [Abstract][Full Text] [Related]
17. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. Ramalho JC; Zlatev ZS; Leitão AE; Pais IP; Fortunato AS; Lidon FC Plant Biol (Stuttg); 2014 Jan; 16(1):133-46. PubMed ID: 23647987 [TBL] [Abstract][Full Text] [Related]
18. Antioxidant and photoprotective responses to elevated CO(2) and heat stress during holm oak regeneration by resprouting, evaluated with NIRS (near-infrared reflectance spectroscopy). Pintó-Marijuan M; Joffre R; Casals I; De Agazio M; Zacchini M; García-Plazaola JI; Esteban R; Aranda X; Guàrdia M; Fleck I Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():5-17. PubMed ID: 22243620 [TBL] [Abstract][Full Text] [Related]
19. Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Brugnoli E; Björkman O Planta; 1992 Jun; 187(3):335-47. PubMed ID: 24178074 [TBL] [Abstract][Full Text] [Related]
20. Burning intensity and low light availability reduce resprouting ability and vigor of Buxus sempervirens L. after clearing. Casals P; Rios AI Sci Total Environ; 2018 Jun; 627():403-416. PubMed ID: 29426163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]