BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 12651384)

  • 1. Parameterization and testing of a coupled photosynthesis-stomatal conductance model for boreal trees.
    Dang QL; Margolis HA; Collatz GJ
    Tree Physiol; 1998 Mar; 18(3):141-153. PubMed ID: 12651384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of branch-level gas exchange of boreal trees: roles of shoot water potential and vapor pressure difference.
    Dang QL; Margolis HA; Coyea MR; Sy M; Collatz GJ
    Tree Physiol; 1997; 17(8_9):521-535. PubMed ID: 14759825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variability in leaf-level CO(2) and water fluxes in Pinus banksiana and Picea mariana in Saskatchewan.
    Sullivan JH; Bovard BD; Middleton EM
    Tree Physiol; 1997; 17(8_9):553-561. PubMed ID: 14759828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites.
    Lavigne MB; Ryan MG
    Tree Physiol; 1997; 17(8_9):543-551. PubMed ID: 14759827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of soil temperature on parameters of a coupled photosynthesis-stomatal conductance model.
    Cai T; Dang QL
    Tree Physiol; 2002 Aug; 22(12):819-27. PubMed ID: 12184971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting life-history traits of black spruce and jack pine influence their physiological response to drought and growth recovery in northeastern boreal Canada.
    Marchand W; Girardin MP; Hartmann H; Lévesque M; Gauthier S; Bergeron Y
    Sci Total Environ; 2021 Nov; 794():148514. PubMed ID: 34218146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada.
    Subedi N; Sharma M
    Glob Chang Biol; 2013 Feb; 19(2):505-16. PubMed ID: 23504788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameterization and testing of a biochemically based photosynthesis model for walnut (Juglans regia) trees and seedlings.
    Le Roux X; Grand S; Dreyer E; Daudet FA
    Tree Physiol; 1999 Jul; 19(8):481-492. PubMed ID: 12651538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf area dynamics of a boreal black spruce fire chronosequence.
    Bond-Lamberty B; Wang C; Gower ST; Norman J
    Tree Physiol; 2002 Oct; 22(14):993-1001. PubMed ID: 12359526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planting stress in newly planted jack pine and white spruce. 2. Changes in tissue water potential components.
    Grossnickle SC
    Tree Physiol; 1988 Mar; 4(1):85-97. PubMed ID: 14972838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.
    Angstmann JL; Ewers BE; Kwon H
    Tree Physiol; 2012 May; 32(5):599-611. PubMed ID: 22539635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydraulic adjustment in jack pine and black spruce seedlings under controlled cycles of dehydration and rehydration.
    Blake TJ; Li J
    Physiol Plant; 2003 Apr; 117(4):532-539. PubMed ID: 12675743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring and modeling conductances of black spruce at three organizational scales: shoot, branch and canopy.
    Rayment MB; Loustau D; Jarvis PG
    Tree Physiol; 2000 Jun; 20(11):713-723. PubMed ID: 12651507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.
    Köstner B; Falge E; Tenhunen JD
    Tree Physiol; 2002 Jun; 22(8):567-74. PubMed ID: 12045028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental controls on the photosynthesis and respiration of a boreal lichen woodland: a growing season of whole-ecosystem exchange measurements by eddy correlation.
    Fan SM; Goulden ML; Munger JW; Daube BC; Bakwin PS; Wofsy SC; Amthor JS; Fitzjarrald DR; Moore KE; Moore TR
    Oecologia; 1995 Jun; 102(4):443-452. PubMed ID: 28306887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of cross-continental variation in tree seed mass in the Canadian Boreal Forest.
    Liu J; Bai Y; Lamb EG; Simpson D; Liu G; Wei Y; Wang D; McKenney DW; Papadopol P
    PLoS One; 2013; 8(4):e61060. PubMed ID: 23593392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquired thermotolerance of jack pine, white spruce and black spruce seedlings.
    Koppenaal RS; Colombo SJ; Blumwald E
    Tree Physiol; 1991 Jan; 8(1):83-91. PubMed ID: 14972899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of radiation regimes in nonrandom forest canopies: theory, measurements, and a simplified modeling approach.
    Kucharik CJ; Norman JM; Gower ST
    Tree Physiol; 1999 Sep; 19(11):695-706. PubMed ID: 12651308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales.
    Grant RF; Margolis HA; Barr AG; Black TA; Dunn AL; Bernier PY; Bergeron O
    Tree Physiol; 2009 Jan; 29(1):1-17. PubMed ID: 19203928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warming induces divergent stomatal dynamics in co-occurring boreal trees.
    Dusenge ME; Ward EJ; Warren JM; Stinziano JR; Wullschleger SD; Hanson PJ; Way DA
    Glob Chang Biol; 2021 Jul; 27(13):3079-3094. PubMed ID: 33784426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.