BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 12651384)

  • 41. Factors affecting transient gene expression in electroporated black spruce (Picea mariana) and jack pine (Pinus banksiana) protoplasts.
    Tautorus TE; Bekkaoui F; Pilon M; Datla RS; Crosby WL; Fowke LC; Dunstan DI
    Theor Appl Genet; 1989 Oct; 78(4):531-6. PubMed ID: 24225681
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field.
    Niinemets U; Díaz-Espejo A; Flexas J; Galmés J; Warren CR
    J Exp Bot; 2009; 60(8):2271-82. PubMed ID: 19305021
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand.
    Tarvainen L; Wallin G; Uddling J
    Oecologia; 2013 Dec; 173(4):1179-89. PubMed ID: 23797410
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The influence of nitrogen and phosphorus supply and genotype on mesophyll conductance limitations to photosynthesis in Pinus radiata.
    Bown HE; Watt MS; Mason EG; Clinton PW; Whitehead D
    Tree Physiol; 2009 Sep; 29(9):1143-51. PubMed ID: 19617215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada.
    Steele SJ; Gower ST; Vogel JG; Norman JM
    Tree Physiol; 1997; 17(8_9):577-587. PubMed ID: 14759831
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?
    Fréchette E; Ensminger I; Bergeron Y; Gessler A; Berninger F
    Tree Physiol; 2011 Nov; 31(11):1204-16. PubMed ID: 22021010
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling topographic effects on net ecosystem productivity of boreal black spruce forests.
    Grant RF
    Tree Physiol; 2004 Jan; 24(1):1-18. PubMed ID: 14652210
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands.
    Helmisaari HS; Derome J; Nöjd P; Kukkola M
    Tree Physiol; 2007 Oct; 27(10):1493-504. PubMed ID: 17669739
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crowns.
    Ewers BE; Oren R; Kim HS; Bohrer G; Lai CT
    Plant Cell Environ; 2007 Apr; 30(4):483-96. PubMed ID: 17324234
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Canopy stomatal conductance following drought, disturbance, and death in an upland oak/pine forest of the new jersey pine barrens, USA.
    Schäfer KV
    Front Plant Sci; 2011; 2():15. PubMed ID: 22639580
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigating light-use efficiency across a jack pine chronosequence during dry and wet years.
    Chasmer L; McCaughey H; Barr A; Black A; Shashkov A; Treitz P; Zha T
    Tree Physiol; 2008 Sep; 28(9):1395-406. PubMed ID: 18595852
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photosynthesis and light-use efficiency by plants in a Canadian boreal forest ecosystem.
    Whitehead D; Gower ST
    Tree Physiol; 2001 Aug; 21(12-13):925-9. PubMed ID: 11498339
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests.
    Helmisaari HS; Ostonen I; Lõhmus K; Derome J; Lindroos AJ; Merilä P; Nöjd P
    Tree Physiol; 2009 Mar; 29(3):445-56. PubMed ID: 19203968
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impacts of prescribed fire on Pinus rigida Mill. in upland forests of the Atlantic Coastal Plain.
    Carlo NJ; Renninger HJ; Clark KL; Schäfer KV
    Tree Physiol; 2016 Aug; 36(8):967-82. PubMed ID: 27259637
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genecological variation corresponding to Forest Ecosystem Classification vegetation and soil types for jack pine and black spruce from northwestern Ontario.
    Parker WH; Van Niejenhuis A; Ward J
    Environ Monit Assess; 1996 Jan; 39(1-3):589-99. PubMed ID: 24198032
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Why does needle photosynthesis decline with tree height in Norway spruce?
    Räim O; Kaurilind E; Hallik L; Merilo E
    Plant Biol (Stuttg); 2012 Mar; 14(2):306-14. PubMed ID: 21974690
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of three approaches to modeling leaf gas exchange in annually drought-stressed ponderosa pine forests.
    Misson L; Panek JA; Goldstein AH
    Tree Physiol; 2004 May; 24(5):529-41. PubMed ID: 14996657
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cross-scale controls on carbon emissions from boreal forest megafires.
    Walker XJ; Rogers BM; Baltzer JL; Cumming SG; Day NJ; Goetz SJ; Johnstone JF; Schuur EAG; Turetsky MR; Mack MC
    Glob Chang Biol; 2018 Sep; 24(9):4251-4265. PubMed ID: 29697169
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photosynthetic capacity of red spruce during winter.
    Schaberg PG; Shane JB; Cali PF; Donnelly JR; Strimbeck GR
    Tree Physiol; 1998 Apr; 18(4):271-276. PubMed ID: 12651382
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.
    Chmura DJ; Tjoelker MG
    Tree Physiol; 2008 May; 28(5):729-42. PubMed ID: 18316305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.