These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12651393)

  • 21. Effects of short-term ozone exposure on the carbon economy of mature and juvenile Douglas firs [Pseudotsuga menziesii (Mirb.) Franco].
    Smeulders SM; Gorissen A; Joosten NN; VAN Veen JA
    New Phytol; 1995 Jan; 129(1):45-53. PubMed ID: 33874420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water availability as dominant control of heat stress responses in two contrasting tree species.
    Ruehr NK; Gast A; Weber C; Daub B; Arneth A
    Tree Physiol; 2016 Feb; 36(2):164-78. PubMed ID: 26491055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status.
    Ryan MG; Hubbard RM; Pongracic S; Raison RJ; McMurtrie RE
    Tree Physiol; 1996 Mar; 16(3):333-43. PubMed ID: 14871734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomass and biomass change in lodgepole pine stands in Alberta.
    Monserud RA; Huang S; Yang Y
    Tree Physiol; 2006 Jun; 26(6):819-31. PubMed ID: 16510398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomass, carbon and nitrogen in single tree components of grey poplar (Populus × canescens) in an uncultivated habitat in Van, Turkey.
    Özcan Y; Makineci E; Özdemir E
    Environ Monit Assess; 2020 May; 192(6):363. PubMed ID: 32405707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Responses of gas exchange to reversible changes in whole-plant transpiration rate in two conifer species.
    Warren CR; Livingston NJ; Turpin DH
    Tree Physiol; 2003 Aug; 23(12):793-803. PubMed ID: 12865245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Belowground carbon pools and processes in different age stands of Douglas-fir.
    Klopatek JM
    Tree Physiol; 2002 Feb; 22(2-3):197-204. PubMed ID: 11830416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Models of knot and stem development in black spruce trees indicate a shift in allocation priority to branches when growth is limited.
    Duchateau E; Auty D; Mothe F; Longuetaud F; Ung CH; Achim A
    PeerJ; 2015; 3():e873. PubMed ID: 25870769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.
    Moore GW; Bond BJ; Jones JA; Phillips N; Meinzer FC
    Tree Physiol; 2004 May; 24(5):481-91. PubMed ID: 14996653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Basal area growth, carbon isotope discrimination, and intrinsic water use efficiency after fertilization of Douglas-fir in the Oregon Coast Range.
    Cornejo-Oviedo EH; Voelker SL; Mainwaring DB; Maguire DA; Meinzer FC; Brooks JR
    For Ecol Manage; 2017; 389():285-295. PubMed ID: 31666758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain.
    Reiter IM; Häberle KH; Nunn AJ; Heerdt C; Reitmayer H; Grote R; Matyssek R
    Oecologia; 2005 Dec; 146(3):337-49. PubMed ID: 16205957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical control of beech pole verticality (Fagus sylvatica) before and after thinning: theoretical modelling and ground-truth data using terrestrial LiDAR.
    Noyer E; Fournier M; Constant T; Collet C; Dlouhá J
    Am J Bot; 2019 Feb; 106(2):187-198. PubMed ID: 30742709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparing light interception with stand basal area for predicting tree growth.
    Courbaud B
    Tree Physiol; 2000 Mar; 20(5_6):407-414. PubMed ID: 12651456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings.
    Schoonmaker AL; Teste FP; Simard SW; Guy RD
    Oecologia; 2007 Dec; 154(3):455-66. PubMed ID: 17885766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seasonal carbohydrate dynamics and growth in Douglas-fir trees experiencing chronic, fungal-mediated reduction in functional leaf area.
    Saffell BJ; Meinzer FC; Woodruff DR; Shaw DC; Voelker SL; Lachenbruch B; Falk K
    Tree Physiol; 2014 Mar; 34(3):218-28. PubMed ID: 24550088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure.
    Domec JC; Gartner BL
    Tree Physiol; 2002 Feb; 22(2-3):91-104. PubMed ID: 11830406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomass and nutrient content of sessile oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in southern Belgium.
    André F; Jonard M; Ponette Q
    Sci Total Environ; 2010 May; 408(11):2285-94. PubMed ID: 20231032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling ozone effects on adult beech trees through simulation of defence, damage, and repair costs: Implementation of the CASIROZ ozone model in the ANAFORE forest model.
    Deckmyn G; Op de Beeck M; Löw M; Then C; Verbeeck H; Wipfler P; Ceulemans R
    Plant Biol (Stuttg); 2007 Mar; 9(2):320-30. PubMed ID: 17357024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leaf water
    Bögelein R; Thomas FM; Kahmen A
    Plant Cell Environ; 2017 Jul; 40(7):1086-1103. PubMed ID: 28042668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.