These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 12651402)
1. Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Partanen J; Koski V; Hänninen H Tree Physiol; 1998 Dec; 18(12):811-816. PubMed ID: 12651402 [TBL] [Abstract][Full Text] [Related]
2. Climatic control of bud burst in young seedlings of nine provenances of Norway spruce. Søgaard G; Johnsen O; Nilsen J; Junttila O Tree Physiol; 2008 Feb; 28(2):311-20. PubMed ID: 18055441 [TBL] [Abstract][Full Text] [Related]
3. Bud burst timing in Picea abies seedlings as affected by temperature during dormancy induction and mild spells during chilling. Granhus A; Fløistad IS; Søgaard G Tree Physiol; 2009 Apr; 29(4):497-503. PubMed ID: 19203964 [TBL] [Abstract][Full Text] [Related]
4. Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment. Hänninen H; Slaney M; Linder S Tree Physiol; 2007 Feb; 27(2):291-300. PubMed ID: 17241971 [TBL] [Abstract][Full Text] [Related]
5. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species. Basler D; Körner C Tree Physiol; 2014 Apr; 34(4):377-88. PubMed ID: 24713858 [TBL] [Abstract][Full Text] [Related]
6. Endodormancy release in Norway spruce grafts representing trees of different ages. Partanen J; Häkkinen R; Sutinen S; Viherä-Aarnio A; Zhang R; Hänninen H Tree Physiol; 2021 Apr; 41(4):631-643. PubMed ID: 32031217 [TBL] [Abstract][Full Text] [Related]
7. Impact of elevated carbon dioxide concentration and temperature on bud burst and shoot growth of boreal Norway spruce. Slaney M; Wallin G; Medhurst J; Linder S Tree Physiol; 2007 Feb; 27(2):301-12. PubMed ID: 17241972 [TBL] [Abstract][Full Text] [Related]
8. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures. Viherä-Aarnio A; Sutinen S; Partanen J; Häkkinen R Tree Physiol; 2014 May; 34(5):547-56. PubMed ID: 24876293 [TBL] [Abstract][Full Text] [Related]
9. Adaptation to climatic changes of the timing of bud burst in populations of Pinus sylvestris L. and Picea abies (L.) Karst. Beuker E Tree Physiol; 1994; 14(7_9):961-970. PubMed ID: 14967662 [TBL] [Abstract][Full Text] [Related]
10. Effects of elevated CO(2), nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage. Murray MB; Smith RI; Leith ID; Fowler D; Lee HS; Friend AD; Jarvis PG Tree Physiol; 1994; 14(7_9):691-706. PubMed ID: 14967641 [TBL] [Abstract][Full Text] [Related]
11. Probability of Spring Frosts, Not Growing Degree-Days, Drives Onset of Spruce Bud Burst in Plantations at the Boreal-Temperate Forest Ecotone. Marquis B; Bergeron Y; Simard M; Tremblay F Front Plant Sci; 2020; 11():1031. PubMed ID: 32849673 [TBL] [Abstract][Full Text] [Related]
12. Effect of alternating day and night temperature on short day-induced bud set and subsequent bud burst in long days in Norway spruce. Olsen JE; Lee Y; Junttila O Front Plant Sci; 2014; 5():691. PubMed ID: 25538722 [TBL] [Abstract][Full Text] [Related]
13. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes. Carneros E; Yakovlev I; Viejo M; Olsen JE; Fossdal CG Planta; 2017 Sep; 246(3):553-566. PubMed ID: 28577177 [TBL] [Abstract][Full Text] [Related]
14. A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Gyllenstrand N; Clapham D; Källman T; Lagercrantz U Plant Physiol; 2007 May; 144(1):248-57. PubMed ID: 17369429 [TBL] [Abstract][Full Text] [Related]
15. Effect of bud burst forcing on transcript expression of selected genes in needles of Norway spruce during autumn. Asante DK; Yakovlev IA; Fossdal CG; Timmerhaus G; Partanen J; Johnsen O Plant Physiol Biochem; 2009 Aug; 47(8):681-9. PubMed ID: 19356941 [TBL] [Abstract][Full Text] [Related]
16. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Hamilton JA; El Kayal W; Hart AT; Runcie DE; Arango-Velez A; Cooke JE Tree Physiol; 2016 Nov; 36(11):1432-1448. PubMed ID: 27449791 [TBL] [Abstract][Full Text] [Related]
17. Anatomy and morphology in developing vegetative buds on detached Norway spruce branches in controlled conditions before bud burst. Sutinen S; Partanen J; Viherä-Aarnio A; Häkkinen R Tree Physiol; 2009 Nov; 29(11):1457-65. PubMed ID: 19773337 [TBL] [Abstract][Full Text] [Related]
18. Night interruption provides evidence for photoperiodic regulation of bud burst in Japanese beech, Ohno M; Yamawo A Plant Signal Behav; 2021 Dec; 16(12):1982562. PubMed ID: 34632946 [TBL] [Abstract][Full Text] [Related]
19. Association of FLOWERING LOCUS T/TERMINAL FLOWER 1-like gene FTL2 expression with growth rhythm in Scots pine (Pinus sylvestris). Avia K; Kärkkäinen K; Lagercrantz U; Savolainen O New Phytol; 2014 Oct; 204(1):159-170. PubMed ID: 24942643 [TBL] [Abstract][Full Text] [Related]
20. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Myking T; Heide OM Tree Physiol; 1995 Nov; 15(11):697-704. PubMed ID: 14965987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]