These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12651448)

  • 21. Potential site productivity influences the rate of forest structural development.
    Larson AJ; Lutz JA; Gersonde RF; Franklin JF; Hietpasi FF
    Ecol Appl; 2008 Jun; 18(4):899-910. PubMed ID: 18536251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA.
    Griffith KT; Ponette-González AG; Curran LM; Weathers KC
    Environ Monit Assess; 2015 May; 187(5):270. PubMed ID: 25893759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Needle anatomy changes with increasing tree age in Douglas-fir.
    Apple M; Tiekotter K; Snow M; Young J; Soeldner A; Phillips D; Tingey D; Bond BJ
    Tree Physiol; 2002 Feb; 22(2-3):129-36. PubMed ID: 11830409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of a physiological process model with forestry yield tables to set limits on annual carbon balances.
    Waring RH; McDowell N
    Tree Physiol; 2002 Feb; 22(2-3):179-88. PubMed ID: 11830414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water availability as dominant control of heat stress responses in two contrasting tree species.
    Ruehr NK; Gast A; Weber C; Daub B; Arneth A
    Tree Physiol; 2016 Feb; 36(2):164-78. PubMed ID: 26491055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.
    Köstner B; Falge E; Tenhunen JD
    Tree Physiol; 2002 Jun; 22(8):567-74. PubMed ID: 12045028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in net ecosystem productivity with forest age following clearcutting of a coastal Douglas-fir forest: testing a mathematical model with eddy covariance measurements along a forest chronosequence.
    Grant RF; Black TA; Humphreys ER; Morgenstern K
    Tree Physiol; 2007 Jan; 27(1):115-31. PubMed ID: 17169913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tannin, nitrogen, and cell wall composition of green vs. senescent Douglas-fir foliage : Within- and between-stand differences in stands of unequal density.
    Horner JD; Cates RG; Gosz JR
    Oecologia; 1987 Jul; 72(4):515-519. PubMed ID: 28312512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dwarf mistletoe affects whole-tree water relations of Douglas fir and western larch primarily through changes in leaf to sapwood ratios.
    Sala A; Carey EV; Callaway RM
    Oecologia; 2001 Jan; 126(1):42-52. PubMed ID: 28547436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-series analysis of delta13C from tree rings. I. Time trends and autocorrelation.
    Monserud RA; Marshall JD
    Tree Physiol; 2001 Sep; 21(15):1087-102. PubMed ID: 11581016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trends in bole biomass accumulation, net primary production and tree mortality in Pseudotsuga menziesii forests of contrasting age.
    Acker SA; Halpern CB; Harmon ME; Dyrness CT
    Tree Physiol; 2002 Feb; 22(2-3):213-7. PubMed ID: 11830418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tree-ring stable isotopes record the impact of a foliar fungal pathogen on CO(2) assimilation and growth in Douglas-fir.
    Saffell BJ; Meinzer FC; Voelker SL; Shaw DC; Brooks JR; Lachenbruch B; McKay J
    Plant Cell Environ; 2014 Jul; 37(7):1536-47. PubMed ID: 24330052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vertical gradients in photosynthetic light response within an old-growth Douglas-fir and western hemlock canopy.
    Lewis JD; McKane RB; Tingey DT; Beedlow PA
    Tree Physiol; 2000 Apr; 20(7):447-456. PubMed ID: 12651440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulating the dynamic behavior of Douglas-fir trees under applied loads by the finite element method.
    Moore JR; Maguire DA
    Tree Physiol; 2008 Jan; 28(1):75-83. PubMed ID: 17938116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the sensitivity of absorbed light and incident light profile to various canopy architecture and stand conditions.
    Kim HS; Palmroth S; Thérézien M; Stenberg P; Oren R
    Tree Physiol; 2011 Jan; 31(1):30-47. PubMed ID: 21389000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements.
    Granier A
    Tree Physiol; 1987 Dec; 3(4):309-20. PubMed ID: 14975915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vegetation Responses to Edge Environments in Old-Growth Douglas-Fir Forests.
    Chen J; Franklin JF; Spies TA
    Ecol Appl; 1992 Nov; 2(4):387-396. PubMed ID: 27759269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of interspecies competition on beech (Fagus orientalis Lipsky) trees and some features of stand in mixed broad-leaved forest.
    Abrari Vajari K
    Environ Monit Assess; 2018 Jun; 190(7):377. PubMed ID: 29869096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure.
    Domec JC; Gartner BL
    Tree Physiol; 2002 Feb; 22(2-3):91-104. PubMed ID: 11830406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures.
    Laubhann D; Eckmüllner O; Sterba H
    For Ecol Manage; 2010 Sep; 260(9):1498-1506. PubMed ID: 21072126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.