BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 12651458)

  • 1. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.
    Pausch RC; Grote EE; Dawson TE
    Tree Physiol; 2000 Mar; 20(4):217-227. PubMed ID: 12651458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.
    Wullschleger SD; King AW
    Tree Physiol; 2000 Apr; 20(8):511-518. PubMed ID: 12651431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of heat pulse and deuterium tracing techniques for estimating sap flow in Eucalyptus grandis trees.
    Kalma SJ; Thorburn PJ; Dunn GM
    Tree Physiol; 1998 Oct; 18(10):697-705. PubMed ID: 12651419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.
    James SA; Clearwater MJ; Meinzer FC; Goldstein G
    Tree Physiol; 2002 Mar; 22(4):277-83. PubMed ID: 11874724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements.
    Poyatos R; Cermák J; Llorens P
    Tree Physiol; 2007 Apr; 27(4):537-48. PubMed ID: 17241996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential errors in measurement of nonuniform sap flow using heat dissipation probes.
    Clearwater MJ; Meinzer FC; Andrade JL; Goldstein G; Holbrook NM
    Tree Physiol; 1999 Aug; 19(10):681-687. PubMed ID: 12651324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of water flux through tropical forest canopy trees: do universal rules apply?
    Meinzer FC; Goldstein G; Andrade JL
    Tree Physiol; 2001 Jan; 21(1):19-26. PubMed ID: 11260820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use.
    Ford CR; McGuire MA; Mitchell RJ; Teskey RO
    Tree Physiol; 2004 Mar; 24(3):241-9. PubMed ID: 14704134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radial profiles of sap flow with increasing tree size in maritime pine.
    Delzon S; Sartore M; Granier A; Loustau D
    Tree Physiol; 2004 Nov; 24(11):1285-93. PubMed ID: 15339738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axial and radial water transport and internal water storage in tropical forest canopy trees.
    James SA; Meinzer FC; Goldstein G; Woodruff D; Jones T; Restom T; Mejia M; Clearwater M; Campanello P
    Oecologia; 2003 Jan; 134(1):37-45. PubMed ID: 12647177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why size matters: the interactive influences of tree diameter distribution and sap flow parameters on upscaled transpiration.
    Berry ZC; Looker N; Holwerda F; Gómez Aguilar LR; Ortiz Colin P; González Martínez T; Asbjornsen H
    Tree Physiol; 2018 Feb; 38(2):263-275. PubMed ID: 29040787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.
    Gebauer T; Horna V; Leuschner C
    Tree Physiol; 2008 Dec; 28(12):1821-30. PubMed ID: 19193565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability with xylem depth in sap flow in trunks and branches of mature olive trees.
    Nadezhdina N; Nadezhdin V; Ferreira MI; Pitacco A
    Tree Physiol; 2007 Jan; 27(1):105-13. PubMed ID: 17169912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest.
    Shinohara Y; Tsuruta K; Ogura A; Noto F; Komatsu H; Otsuki K; Maruyama T
    Tree Physiol; 2013 May; 33(5):550-8. PubMed ID: 23640874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate and life history traits.
    Oliva Carrasco L; Bucci SJ; Di Francescantonio D; Lezcano OA; Campanello PI; Scholz FG; Rodríguez S; Madanes N; Cristiano PM; Hao GY; Holbrook NM; Goldstein G
    Tree Physiol; 2015 Apr; 35(4):354-65. PubMed ID: 25428825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees.
    Berdanier AB; Miniat CF; Clark JS
    Tree Physiol; 2016 Aug; 36(8):932-41. PubMed ID: 27126230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.
    Moore GW; Bond BJ; Jones JA; Phillips N; Meinzer FC
    Tree Physiol; 2004 May; 24(5):481-91. PubMed ID: 14996653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees.
    Ford CR; Goranson CE; Mitchell RJ; Will RE; Teskey RO
    Tree Physiol; 2004 Sep; 24(9):941-50. PubMed ID: 15234892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Radial variation and time lag of sap flow of Populus gansuensis in Minqin Oasis, Northwest].
    Dang HZ; Yang WB; Li W; Zhang YY; Li CL
    Ying Yong Sheng Tai Xue Bao; 2014 Sep; 25(9):2501-10. PubMed ID: 25757298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.