These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12651460)

  • 1. Leaf photosynthetic characteristics of beech (Fagus sylvatica) saplings during three years of exposure to elevated CO(2) concentration.
    Liozon R; Badeck FW; Genty B; Meyer S; Saugier B
    Tree Physiol; 2000 Mar; 20(4):239-247. PubMed ID: 12651460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of elevated CO(2) concentration on leaf characteristics and photosynthetic capacity of beech (Fagus sylvatica) during the growing season.
    Epron D; Liozon R; Mousseau M
    Tree Physiol; 1996 Apr; 16(4):425-32. PubMed ID: 14871728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of elevated [CO(2)] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis).
    Murray MB; Smith RI; Friend A; Jarvis PG
    Tree Physiol; 2000 Apr; 20(7):421-434. PubMed ID: 12651438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings.
    Zhang S; Dang QL
    Tree Physiol; 2006 Nov; 26(11):1457-67. PubMed ID: 16877330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term photosynthetic acclimation to increased atmospheric CO(2) concentration in young birch (Betula pendula) trees.
    Rey A; Jarvis PG
    Tree Physiol; 1998 Jul; 18(7):441-450. PubMed ID: 12651355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diurnal and seasonal changes in the impact of CO(2) enrichment on assimilation, stomatal conductance and growth in a long-term study of Mangifera indica in the wet-dry tropics of Australia.
    Goodfellow J; Eamus D; Duff G
    Tree Physiol; 1997 May; 17(5):291-9. PubMed ID: 14759852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure.
    Löw M; Häberle KH; Warren CR; Matyssek R
    Plant Biol (Stuttg); 2007 Mar; 9(2):197-206. PubMed ID: 17357014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological responses of birch (Betula pendula) to ozone: a comparison between open-soil-grown trees exposed for six growing seasons and potted seedlings exposed for one season.
    Oksanen E
    Tree Physiol; 2003 Jun; 23(9):603-14. PubMed ID: 12750053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic characteristics, stomatal responses and water relations of Fagus sylvatica: impact of air quality at a site in southern Britain.
    Taylor G; Dobson MC
    New Phytol; 1989 Nov; 113(3):265-273. PubMed ID: 33874189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evapotranspiration of beech stands and transpiration of beech leaves subject to atmospheric CO(2) enrichment.
    Overdieck D; Forstreuter M
    Tree Physiol; 1994; 14(7_9):997-1003. PubMed ID: 14967665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic responses to ozone of upper and lower canopy leaves of Fagus crenata Blume seedlings grown under different soil nutrient conditions.
    Kinose Y; Fukamachi Y; Okabe S; Hiroshima H; Watanabe M; Izuta T
    Environ Pollut; 2017 Apr; 223():213-222. PubMed ID: 28162800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal time-course of gradients of photosynthetic capacity and mesophyll conductance to CO2 across a beech (Fagus sylvatica L.) canopy.
    Montpied P; Granier A; Dreyer E
    J Exp Bot; 2009; 60(8):2407-18. PubMed ID: 19457983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low soil temperature inhibits the effect of high nutrient supply on photosynthetic response to elevated carbon dioxide concentration in white birch seedlings.
    Ambebe TF; Dang QL; Li J
    Tree Physiol; 2010 Feb; 30(2):234-43. PubMed ID: 20007132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic properties of naturally regenerated beech saplings respond to canopy opening.
    Caquet B; Barigah TS; Cochard H; Montpied P; Collet C; Dreyer E; Epron D
    Tree Physiol; 2009 Nov; 29(11):1395-405. PubMed ID: 19744973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction Effect between Elevated CO₂ and Fertilization on Biomass, Gas Exchange and C/N Ratio of European Beech (Fagus sylvatica L.).
    Lotfiomran N; Köhl M; Fromm J
    Plants (Basel); 2016 Sep; 5(3):. PubMed ID: 27618119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flux-based response of sucrose and starch in leaves of adult beech trees (Fagus sylvatica L.) under chronic free-air O3 fumigation.
    Blumenröther MC; Löw M; Matyssek R; Osswald W
    Plant Biol (Stuttg); 2007 Mar; 9(2):207-14. PubMed ID: 17357015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of season, needle age and elevated atmospheric CO(2) on photosynthesis in Scots pine (Pinus sylvestris).
    Jach ME; Ceulemans R
    Tree Physiol; 2000 Feb; 20(3):145-157. PubMed ID: 12651467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic traits of Siebold's beech seedlings in changing light conditions by removal of shading trees under elevated CO₂.
    Watanabe M; Kitaoka S; Eguchi N; Watanabe Y; Satomura T; Takagi K; Satoh F; Koike T
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():56-62. PubMed ID: 26307372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic activity in relation to a gradient of leaf nitrogen content within a canopy of Siebold's beech and Japanese oak saplings under elevated ozone.
    Watanabe M; Hoshika Y; Inada N; Koike T
    Sci Total Environ; 2018 Sep; 636():1455-1462. PubMed ID: 29913605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of elevated CO(2) concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees.
    Roberntz P; Stockfors J
    Tree Physiol; 1998 Apr; 18(4):233-241. PubMed ID: 12651377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.