BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12651491)

  • 1. Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia.
    White DA; Turner NC; Galbraith JH
    Tree Physiol; 2000 Nov; 20(17):1157-1165. PubMed ID: 12651491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf osmotic potential of Eucalyptus hybrids responds differently to freezing and drought, with little clonal variation.
    Callister AN; Arndt SK; Ades PK; Merchant A; Rowell D; Adams MA
    Tree Physiol; 2008 Aug; 28(8):1297-304. PubMed ID: 18519261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites.
    Szota C; Farrell C; Koch JM; Lambers H; Veneklaas EJ
    Tree Physiol; 2011 Oct; 31(10):1052-66. PubMed ID: 21908435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-ordination among leaf water relations and xylem vulnerability to embolism of Eucalyptus trees growing along a depth-to-groundwater gradient.
    Zolfaghar S; Villalobos-Vega R; Cleverly J; Eamus D
    Tree Physiol; 2015 Jul; 35(7):732-43. PubMed ID: 26023059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of manipulation of water and nitrogen regime on the water relations of the desert shrub Larrea tridentata.
    Meinzer FC; Sharifi MR; Nilsen ET; Rundel PW
    Oecologia; 1988 Dec; 77(4):480-486. PubMed ID: 28311267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient.
    Körner C; Cochrane PM
    Oecologia; 1985 Jun; 66(3):443-455. PubMed ID: 28310877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vulnerability of native savanna trees and exotic Khaya senegalensis to seasonal drought.
    Arndt SK; Sanders GJ; Bristow M; Hutley LB; Beringer J; Livesley SJ
    Tree Physiol; 2015 Jul; 35(7):783-91. PubMed ID: 25934988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf water relations of Eucalyptus globulus ssp. globulus and E. nitens: seasonal, drought and species effects.
    White DA; Beadle CL; Worledge D
    Tree Physiol; 1996 May; 16(5):469-76. PubMed ID: 14871715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf water relations during summer water deficit: differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia.
    Mitchell PJ; Veneklaas EJ; Lambers H; Burgess SS
    Plant Cell Environ; 2008 Dec; 31(12):1791-802. PubMed ID: 18761698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic and elastic adjustments in cold desert shrubs differing in rooting depth: coping with drought and subzero temperatures.
    Scholz FG; Bucci SJ; Arias N; Meinzer FC; Goldstein G
    Oecologia; 2012 Dec; 170(4):885-97. PubMed ID: 22644052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water balance in developing leaves of four tropical savanna woody species.
    Meinzer F; Seymour V; Goldstein G
    Oecologia; 1983 Nov; 60(2):237-243. PubMed ID: 28310491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought.
    Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT
    Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf water relations of Eucalyptus cloeziana and Eucalyptus argophloia in response to water deficit.
    Ngugi MR; Doley D; Hunt MA; Dart P; Ryan P
    Tree Physiol; 2003 Apr; 23(5):335-43. PubMed ID: 12615548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planting stress in newly planted jack pine and white spruce. 2. Changes in tissue water potential components.
    Grossnickle SC
    Tree Physiol; 1988 Mar; 4(1):85-97. PubMed ID: 14972838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought.
    Nolan RH; Tarin T; Santini NS; McAdam SAM; Ruman R; Eamus D
    Plant Cell Environ; 2017 Dec; 40(12):3122-3134. PubMed ID: 28982212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water relations of seedlings of three Quercus species: variations across and within species grown in contrasting light and water regimes.
    Castro-Díez P; Navarro J
    Tree Physiol; 2007 Jul; 27(7):1011-8. PubMed ID: 17403654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field water relations of a wet-tropical forest tree species, Pentaclethra macroloba (Mimosaceae).
    Oberbauer SF; Strain BR; Riechers GH
    Oecologia; 1987 Feb; 71(3):369-374. PubMed ID: 28312983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecophysiological analysis of woody species in contrasting temperate communities during wet and dry years.
    Kubiske ME; Abrams MD
    Oecologia; 1994 Aug; 98(3-4):303-312. PubMed ID: 28313906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest.
    Inoue Y; Ichie T; Kenzo T; Yoneyama A; Kumagai T; Nakashizuka T
    Tree Physiol; 2017 Oct; 37(10):1301-1311. PubMed ID: 28541561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of leaf conductance and water potential of five Himalayan tree species.
    Poudyal K; Jha PK; Zobel DB; Thapa CB
    Tree Physiol; 2004 Jun; 24(6):689-99. PubMed ID: 15059769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.