These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12651505)

  • 1. Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations.
    Oleksyn J; Zytkowiak R; Karolewski P; Reich PB; Tjoelker MG
    Tree Physiol; 2000 Jun; 20(12):837-847. PubMed ID: 12651505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season.
    Domisch T; Finér L; Lehto T
    Tree Physiol; 2001 May; 21(7):465-72. PubMed ID: 11340047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of elevated carbon dioxide concentration and temperature on needle growth, respiration and carbohydrate status in field-grown Scots pines during the needle expansion period.
    Zha T; Ryyppö A; Wang KY; Kellomäki S
    Tree Physiol; 2001 Nov; 21(17):1279-87. PubMed ID: 11696415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient contents and concentrations in relation to growth of Picea abies and Fagus sylvatica along a European transect.
    Bauer G; Schulze ED; Mund M
    Tree Physiol; 1997 Dec; 17(12):777-86. PubMed ID: 14759887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partitioning of carbohydrates and biomass of needles in Scots pine canopy.
    Mandre M; Tullus H; Klõseiko J
    Z Naturforsch C J Biosci; 2002; 57(3-4):296-302. PubMed ID: 12064730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Seasonal dynamics of energy and nutrients of
    Zhou G; Xu WZ; Wan J; Wang YN; Liu LT; Liu QJ
    Ying Yong Sheng Tai Xue Bao; 2021 May; 32(5):1663-1672. PubMed ID: 34042360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of needle age on the response of respiration in Scots pine to long-term elevation of carbon dioxide concentration and temperature.
    Zha T; Wang KY; Ryyppö A; Kellomäki S
    Tree Physiol; 2002 Dec; 22(17):1241-8. PubMed ID: 12464577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal patterns of carbohydrate reserves in red spruce seedlings.
    Schaberg PG; Snyder MC; Shane JB; Donnelly JR
    Tree Physiol; 2000 Apr; 20(8):549-555. PubMed ID: 12651436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations.
    Oleksyn J; Reich PB; Zytkowiak R; Karolewski P; Tjoelker MG
    Oecologia; 2003 Jul; 136(2):220-35. PubMed ID: 12756524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal development of leaf area in a young, widely spaced Pinus radiata D. Don stand.
    Whitehead D; Kelliher FM; Frampton CM; Godfrey MJ
    Tree Physiol; 1994; 14(7_9):1019-1038. PubMed ID: 14967667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon assimilation and nitrogen in needles of fertilized and unfertilized field-grown Scots pine at natural and elevated concentrations of CO2.
    Laitinen K; Luomala EM; Kellomäki S; Vapaavuori E
    Tree Physiol; 2000 Jul; 20(13):881-92. PubMed ID: 11303578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Changes of non-structural carbohydrates of Pinus sylvestris var. mongolica seedlings in the process of drought-induced mortality].
    Wang K; Shen C; Cao P; Song LN; Yu GQ
    Ying Yong Sheng Tai Xue Bao; 2018 Nov; 29(11):3513-3520. PubMed ID: 30460797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defoliation-induced responses in peroxidases, phenolics, and polyamines in scots pine (Pinus sylvestris L.) needles.
    Roitto M; Markkola A; Julkunen-Tiitto R; Sarjala T; Rautio P; Kuikka K; Tuomi J
    J Chem Ecol; 2003 Aug; 29(8):1905-18. PubMed ID: 12956514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response.
    Reich PB; Oleksyn J; Modrzynski J; Tjoelker MG
    Tree Physiol; 1996 Jul; 16(7):643-7. PubMed ID: 14871702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of seasonal air and soil temperatures on photosynthesis in Scots pine trees.
    Strand M; Lundmark T; Söderbergh I; Mellander PE
    Tree Physiol; 2002 Aug; 22(12):839-47. PubMed ID: 12184973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system.
    Utriainen J; Holopainen T
    Tree Physiol; 2001 Oct; 21(16):1205-13. PubMed ID: 11600342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break.
    Schädel C; Blöchl A; Richter A; Hoch G
    Tree Physiol; 2009 Jul; 29(7):901-11. PubMed ID: 19457884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diurnal changes in gas exchange and carbon partitioning in needles of fast- and slow-growing families of loblolly pine (Pinus taeda).
    Yang WQ; Murthy R; King P; Topa MA
    Tree Physiol; 2002 May; 22(7):489-98. PubMed ID: 11986052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal changes in amino acids, protein and total nitrogen in needles of fertilized Scots pine trees.
    Näsholm T; Ericsson A
    Tree Physiol; 1990 Sep; 6(3):267-81. PubMed ID: 14972938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waterlogging and soil freezing during dormancy affected root and shoot phenology and growth of Scots pine saplings.
    Roitto M; Sutinen S; Wang AF; Domisch T; Lehto T; Repo T
    Tree Physiol; 2019 May; 39(5):805-818. PubMed ID: 30753688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.