These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12651531)

  • 1. Diurnal changes in water conduction in loblolly pine (Pinus taeda) and Virginia pine (P. virginiana) during soil dehydration.
    Wakamiya-Noborio I; Heilman JL; Newton RJ; Messina MG
    Tree Physiol; 1999 Jul; 19(9):575-581. PubMed ID: 12651531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of phenology, water availability and seed source on loblolly pine biomass partitioning and transpiration.
    Barnes AD
    Tree Physiol; 2002 Jul; 22(10):733-40. PubMed ID: 12091155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of CO
    Tolley LC; Strain BR
    Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of elevated carbon dioxide and water availability on herbaceous weed development and growth of transplanted loblolly pine (Pinus taeda).
    Gavazzi M; Seiler J; Aust W; Zedaker S
    Environ Exp Bot; 2000 Nov; 44(3):185-194. PubMed ID: 11064039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transpiration drivers of high-elevation five-needle pines (Pinus longaeva and Pinus flexilis) in sky-island ecosystems of the North American Great Basin.
    Liu X; Biondi F
    Sci Total Environ; 2020 Oct; 739():139861. PubMed ID: 32544678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings.
    Tjoelker MG; Luxmoore RJ
    New Phytol; 1991 Sep; 119(1):69-81. PubMed ID: 33874340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of loblolly pine, sweetgum and crab grass roots to localized increases in nitrogen in two watering regimes.
    Ludovici KH; Morris LA
    Tree Physiol; 1996; 16(11_12):933-939. PubMed ID: 14871786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water availability and genetic effects on water relations of loblolly pine (Pinus taeda) stands.
    Gonzalez-Benecke CA; Martin TA
    Tree Physiol; 2010 Mar; 30(3):376-92. PubMed ID: 20071360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diurnal changes in gas exchange and carbon partitioning in needles of fast- and slow-growing families of loblolly pine (Pinus taeda).
    Yang WQ; Murthy R; King P; Topa MA
    Tree Physiol; 2002 May; 22(7):489-98. PubMed ID: 11986052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geographical variation in water relations, hydraulic architecture and terpene composition of Aleppo pine seedlings from Italian provinces.
    Tognetti R; Michelozzi M; Giovannelli A
    Tree Physiol; 1997 Apr; 17(4):241-50. PubMed ID: 14759863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest.
    Kolb TE; Stone JE
    Tree Physiol; 2000 Jan; 20(1):1-12. PubMed ID: 12651521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suitability of some southern and western pines as hosts for the pine shoot beetle, Tomicus piniperda (Coleoptera: Scolytidae).
    Eager TA; Berisford CW; Dalusky MJ; Nielsen DG; Brewer JW; Hilty SJ; Haack RA
    J Econ Entomol; 2004 Apr; 97(2):460-7. PubMed ID: 15154468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought.
    Cregg BM
    Tree Physiol; 1994; 14(7_9):883-898. PubMed ID: 14967656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diplodia pinea, the Cause of Diplodia Blight of Pines, Confirmed in Alabama, Louisiana, and Mississippi.
    Stanosz GR; Smith DR; Fraedrich SW; Baird RE; Mangini A
    Plant Dis; 2009 Feb; 93(2):198. PubMed ID: 30764123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water relations of loblolly pine seedlings from diverse geographic origins.
    Bongarten BC; Teskey RO
    Tree Physiol; 1986 Dec; 1(3):265-76. PubMed ID: 14975881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydraulic adjustment in jack pine and black spruce seedlings under controlled cycles of dehydration and rehydration.
    Blake TJ; Li J
    Physiol Plant; 2003 Apr; 117(4):532-539. PubMed ID: 12675743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance.
    Duursma RA; Kolari P; Perämäki M; Nikinmaa E; Hari P; Delzon S; Loustau D; Ilvesniemi H; Pumpanen J; Mäkelä A
    Tree Physiol; 2008 Feb; 28(2):265-76. PubMed ID: 18055437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water relations and growth of loblolly pine seedlings planted under a shelterwood and in a clear-cut.
    Dalton CT; Messina MG
    Tree Physiol; 1995 Jan; 15(1):19-26. PubMed ID: 14966007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation.
    Aspinwall MJ; King JS; McKeand SE; Domec JC
    Tree Physiol; 2011 Jan; 31(1):78-91. PubMed ID: 21389004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance.
    Irvine J; Perks MP; Magnani F; Grace J
    Tree Physiol; 1998 Jun; 18(6):393-402. PubMed ID: 12651364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.