These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 12651567)
21. New root growth of Douglas-fir seedlings at low carbon dioxide concentration. Van Den Driessche R Tree Physiol; 1991 Apr; 8(3):289-95. PubMed ID: 14972879 [TBL] [Abstract][Full Text] [Related]
22. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings. Zhang S; Dang QL Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153 [TBL] [Abstract][Full Text] [Related]
23. Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO(2) for 19 months in the field. Tissue DT; Thomas RB; Strain BR Tree Physiol; 1996; 16(1_2):49-59. PubMed ID: 14871747 [TBL] [Abstract][Full Text] [Related]
24. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity. Andrews SF; Flanagan LB; Sharp EJ; Cai T Tree Physiol; 2012 Feb; 32(2):146-60. PubMed ID: 22318220 [TBL] [Abstract][Full Text] [Related]
25. Effects of season, needle age and elevated atmospheric CO(2) on photosynthesis in Scots pine (Pinus sylvestris). Jach ME; Ceulemans R Tree Physiol; 2000 Feb; 20(3):145-157. PubMed ID: 12651467 [TBL] [Abstract][Full Text] [Related]
26. Supply and demand processes as controls over needle monoterpene synthesis and concentration in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco]. Litvak ME; Constable JV; Monson RK Oecologia; 2002 Aug; 132(3):382-391. PubMed ID: 28547416 [TBL] [Abstract][Full Text] [Related]
27. Effect of elevated [CO(2)] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis). Murray MB; Smith RI; Friend A; Jarvis PG Tree Physiol; 2000 Apr; 20(7):421-434. PubMed ID: 12651438 [TBL] [Abstract][Full Text] [Related]
28. Low soil temperature inhibits the effect of high nutrient supply on photosynthetic response to elevated carbon dioxide concentration in white birch seedlings. Ambebe TF; Dang QL; Li J Tree Physiol; 2010 Feb; 30(2):234-43. PubMed ID: 20007132 [TBL] [Abstract][Full Text] [Related]
29. Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2] and temperature. Ghannoum O; Phillips NG; Sears MA; Logan BA; Lewis JD; Conroy JP; Tissue DT Plant Cell Environ; 2010 Oct; 33(10):1671-81. PubMed ID: 20492554 [TBL] [Abstract][Full Text] [Related]
30. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings. Smit J; Van Den Driessche R Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945 [TBL] [Abstract][Full Text] [Related]
31. Effects of elevated CO(2) and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Kubiske ME; Pregitzer KS Tree Physiol; 1996 Mar; 16(3):351-8. PubMed ID: 14871736 [TBL] [Abstract][Full Text] [Related]
32. Response of respiration of soybean leaves grown at ambient and elevated carbon dioxide concentrations to day-to-day variation in light and temperature under field conditions. Bunce JA Ann Bot; 2005 May; 95(6):1059-66. PubMed ID: 15781437 [TBL] [Abstract][Full Text] [Related]
33. Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees. Quentin AG; Crous KY; Barton CV; Ellsworth DS Tree Physiol; 2015 Nov; 35(11):1249-63. PubMed ID: 26496960 [TBL] [Abstract][Full Text] [Related]
34. Photosynthetic downregulation in leaves of the Japanese white birch grown under elevated CO(2) concentration does not change their temperature-dependent susceptibility to photoinhibition. Komatsu M; Tobita H; Watanabe M; Yazaki K; Koike T; Kitao M Physiol Plant; 2013 Feb; 147(2):159-68. PubMed ID: 22607385 [TBL] [Abstract][Full Text] [Related]
35. Seasonal photosynthetic responses to light and temperature in white spruce (Picea glauca) seedlings planted under an aspen (Populus tremuloides) canopy and in the open. Man R; Lieffers VJ Tree Physiol; 1997 Jul; 17(7):437-44. PubMed ID: 14759835 [TBL] [Abstract][Full Text] [Related]
36. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Sefcik LT; Zak DR; Ellsworth DS Tree Physiol; 2006 Dec; 26(12):1589-99. PubMed ID: 17169898 [TBL] [Abstract][Full Text] [Related]
37. The effect of light on stomatal control of gas exchange in Douglas fir (Pseudotsuga menziesii) saplings. Meinzer FC Oecologia; 1982 Aug; 54(2):270-274. PubMed ID: 28311439 [TBL] [Abstract][Full Text] [Related]
38. Biophysical controls of carbon flows in three successional Douglas-fir stands based on eddy-covariance measurements. Chen J; Falk M; Euskirchen E; U KT; Suchanek TH; Ustin SL; Bond BJ; Brosofske KD; Phillips N; Bi R Tree Physiol; 2002 Feb; 22(2-3):169-77. PubMed ID: 11830413 [TBL] [Abstract][Full Text] [Related]
39. Water stress decreases the transfer conductance of Douglas-fir (Pseudotsuga menziesii) seedlings. Warren CR; Livingston NJ; Turpin DH Tree Physiol; 2004 Sep; 24(9):971-9. PubMed ID: 15234894 [TBL] [Abstract][Full Text] [Related]
40. Morphology and Stomatal Function of Douglas Fir Needles Exposed to Climate Change: Elevated CO2 and Temperature. Apple ME; Olszyk DM; Ormrod DP; Lewis J; Southworth D; Tingey DT Int J Plant Sci; 2000 Jan; 161(1):127-132. PubMed ID: 10648202 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]