These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 12651576)
1. Tissue chemistry and carbon allocation in seedlings of Pinus palustris subjected to elevated atmospheric CO(2) and water stress. Runion GB; Entry JA; Prior SA; Mitchell RJ; Rogers HH Tree Physiol; 1999 Apr; 19(4_5):329-335. PubMed ID: 12651576 [TBL] [Abstract][Full Text] [Related]
2. Effects of atmospheric CO(2) on longleaf pine: productivity and allocation as influenced by nitrogen and water. Prior SA; Runion GB; Mitchell RJ; Rogers HH; Amthor JS Tree Physiol; 1997 Jun; 17(6):397-405. PubMed ID: 14759848 [TBL] [Abstract][Full Text] [Related]
3. Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Booker FL; Maier CA Tree Physiol; 2001 Jun; 21(9):609-16. PubMed ID: 11390305 [TBL] [Abstract][Full Text] [Related]
4. Effects of season, needle age and elevated atmospheric CO(2) on photosynthesis in Scots pine (Pinus sylvestris). Jach ME; Ceulemans R Tree Physiol; 2000 Feb; 20(3):145-157. PubMed ID: 12651467 [TBL] [Abstract][Full Text] [Related]
5. Responses of loblolly pine seedlings to elevated CO(2) and fluctuating water supply. Tschaplinski TJ; Norby RJ; Wullschleger SD Tree Physiol; 1993 Oct; 13(3):283-96. PubMed ID: 14969886 [TBL] [Abstract][Full Text] [Related]
6. The effect of elevated CO Gebauer RL; Strain BR; Reynolds JF Oecologia; 1997 Dec; 113(1):29-36. PubMed ID: 28307291 [TBL] [Abstract][Full Text] [Related]
7. [Changes of non-structural carbohydrates of Pinus sylvestris var. mongolica seedlings in the process of drought-induced mortality]. Wang K; Shen C; Cao P; Song LN; Yu GQ Ying Yong Sheng Tai Xue Bao; 2018 Nov; 29(11):3513-3520. PubMed ID: 30460797 [TBL] [Abstract][Full Text] [Related]
8. Effect of elevated [CO(2)] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis). Murray MB; Smith RI; Friend A; Jarvis PG Tree Physiol; 2000 Apr; 20(7):421-434. PubMed ID: 12651438 [TBL] [Abstract][Full Text] [Related]
9. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Kogawara S; Norisada M; Tange T; Yagi H; Kojima K Tree Physiol; 2006 Jan; 26(1):25-33. PubMed ID: 16203711 [TBL] [Abstract][Full Text] [Related]
10. Effect of elevated carbon dioxide concentration and root restriction on net photosynthesis, water relations and foliar carbohydrate status of loblolly pine seedlings. Will RE; Teskey RO Tree Physiol; 1997 Oct; 17(10):655-61. PubMed ID: 14759905 [TBL] [Abstract][Full Text] [Related]
11. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment. Pritchard SG; Davis MA; Mitchell RJ; Prior SA; Boykin DL; Rogers HH; Runion GB Environ Exp Bot; 2001 Aug; 46(1):55-69. PubMed ID: 11378173 [TBL] [Abstract][Full Text] [Related]
12. Effects of elevated atmospheric carbon dioxide on biomass and carbon accumulation in a model regenerating longleaf pine community. Runion GB; Davis MA; Pritchard SG; Prior SA; Mitchell RJ; Torbert HA; Rogers HH; Dute RR J Environ Qual; 2006; 35(4):1478-86. PubMed ID: 16825468 [TBL] [Abstract][Full Text] [Related]
13. Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO(2) enrichment. Norby RJ; O'Neill EG; Hood WG; Luxmoore RJ Tree Physiol; 1987 Sep; 3(3):203-10. PubMed ID: 14975813 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system. Utriainen J; Holopainen T Tree Physiol; 2001 Oct; 21(16):1205-13. PubMed ID: 11600342 [TBL] [Abstract][Full Text] [Related]
15. Foliar nitrogen concentrations and natural abundance of (15)N suggest nitrogen allocation patterns of Douglas-fir and mycorrhizal fungi during development in elevated carbon dioxide concentration and temperature. Hobbie EA; Olszyk DM; Rygiewicz PT; Tingey DT; Johnson MG Tree Physiol; 2001 Sep; 21(15):1113-22. PubMed ID: 11581018 [TBL] [Abstract][Full Text] [Related]
16. Chemistry and long-term decomposition of roots of Douglas-fir grown under elevated atmospheric carbon dioxide and warming conditions. Chen H; Rygiewicz PT; Johnson MG; Harmon ME; Tian H; Tang JW J Environ Qual; 2008; 37(4):1327-36. PubMed ID: 18574162 [TBL] [Abstract][Full Text] [Related]
17. Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata seedlings. Karonen M; Ossipov V; Ossipova S; Kapari L; Loponen J; Matsumura H; Kohno Y; Mikami C; Sakai Y; Izuta T; Pihlaja K J Chem Ecol; 2006 Jul; 32(7):1445-58. PubMed ID: 16718564 [TBL] [Abstract][Full Text] [Related]
18. Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO(2) for 19 months in the field. Tissue DT; Thomas RB; Strain BR Tree Physiol; 1996; 16(1_2):49-59. PubMed ID: 14871747 [TBL] [Abstract][Full Text] [Related]
19. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Domisch T; Finér L; Lehto T Tree Physiol; 2001 May; 21(7):465-72. PubMed ID: 11340047 [TBL] [Abstract][Full Text] [Related]
20. Gas exchange and dry matter allocation responses to elevation of atmospheric CO(2) concentration in seedlings of three tree species. Hollinger DY Tree Physiol; 1987 Sep; 3(3):193-202. PubMed ID: 14975812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]