These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12651579)

  • 1. Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees.
    Hubbard RM; Bond BJ; Ryan MG
    Tree Physiol; 1999 Mar; 19(3):165-172. PubMed ID: 12651579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.
    Hubbard RM; Bond BJ; Senock RS; Ryan MG
    Tree Physiol; 2002 Jun; 22(8):575-81. PubMed ID: 12045029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees.
    McDowell NG; Phillips N; Lunch C; Bond BJ; Ryan MG
    Tree Physiol; 2002 Aug; 22(11):763-74. PubMed ID: 12184980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transpiration and whole-tree conductance in ponderosa pine trees of different heights.
    Ryan MG; Bond BJ; Law BE; Hubbard RM; Woodruff D; Cienciala E; Kucera J
    Oecologia; 2000 Sep; 124(4):553-560. PubMed ID: 28308394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees.
    Ambrose AR; Baxter WL; Wong CS; Burgess SS; Williams CB; Næsborg RR; Koch GW; Dawson TE
    Oecologia; 2016 Nov; 182(3):713-30. PubMed ID: 27553681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural adjustments in resprouting trees drive differences in post-fire transpiration.
    Nolan RH; Mitchell PJ; Bradstock RA; Lane PN
    Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.
    Simonin K; Kolb TE; Montes-Helu M; Koch GW
    Tree Physiol; 2006 Apr; 26(4):493-503. PubMed ID: 16414928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest.
    Kolb TE; Stone JE
    Tree Physiol; 2000 Jan; 20(1):1-12. PubMed ID: 12651521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Hydraulic limitation on photosynthetic rate of old Populus simonii trees in sandy soil of north Shaanxi Province].
    Zuo LX; Li YY; Chen JC
    Ying Yong Sheng Tai Xue Bao; 2014 Jun; 25(6):1607-14. PubMed ID: 25223014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.
    Koch GW; Sillett SC; Antoine ME; Williams CB
    Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees.
    Domec JC; Pruyn ML
    Tree Physiol; 2008 Oct; 28(10):1493-504. PubMed ID: 18708331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees.
    Clearwater MJ; Meinzer FC
    Tree Physiol; 2001 Jul; 21(10):683-90. PubMed ID: 11446997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced photosynthesis in old oak (Quercus robur): the impact of crown and hydraulic architecture.
    Rust S; Roloff A
    Tree Physiol; 2002 Jun; 22(8):597-601. PubMed ID: 12045032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats.
    Addington RN; Donovan LA; Mitchell RJ; Vose JM; Pecot SD; Jack SB; Hacke UG; Sperry JS; Oren R
    Plant Cell Environ; 2006 Apr; 29(4):535-45. PubMed ID: 17080605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem.
    Otieno DO; Schmidt MW; Kurz-Besson C; Lobo Do Vale R; Pereira JS; Tenhunen JD
    Tree Physiol; 2007 Aug; 27(8):1179-87. PubMed ID: 17472943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora.
    Han Q
    Tree Physiol; 2011 Sep; 31(9):976-84. PubMed ID: 21467050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameterization and testing of a biochemically based photosynthesis model for walnut (Juglans regia) trees and seedlings.
    Le Roux X; Grand S; Dreyer E; Daudet FA
    Tree Physiol; 1999 Jul; 19(8):481-492. PubMed ID: 12651538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake.
    Panek JA; Goldstein AH
    Tree Physiol; 2001 Mar; 21(5):337-44. PubMed ID: 11262925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine.
    Irvine J; Law BE; Kurpius MR; Anthoni PM; Moore D; Schwarz PA
    Tree Physiol; 2004 Jul; 24(7):753-63. PubMed ID: 15123447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Height-related variations of leaf traits reflect strategies for maintaining photosynthetic and hydraulic homeostasis in mature and old Pinus densiflora trees.
    Azuma W; Ishii HR; Masaki T
    Oecologia; 2019 Feb; 189(2):317-328. PubMed ID: 30612226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.