BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12651871)

  • 1. Alternative 5' exons of the CFTR gene show developmental regulation.
    Mouchel N; Broackes-Carter F; Harris A
    Hum Mol Genet; 2003 Apr; 12(7):759-69. PubMed ID: 12651871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative splicing of the ovine CFTR gene.
    Broackes-Carter FC; Williams SH; Wong PL; Mouchel N; Harris A
    Mamm Genome; 2003 Nov; 14(11):778-87. PubMed ID: 14722727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac expression of the cystic fibrosis transmembrane conductance regulator involves novel exon 1 usage to produce a unique amino-terminal protein.
    Davies WL; Vandenberg JI; Sayeed RA; Trezise AE
    J Biol Chem; 2004 Apr; 279(16):15877-87. PubMed ID: 14754881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple mechanisms influence regulation of the cystic fibrosis transmembrane conductance regulator gene promoter.
    Lewandowska MA; Costa FF; Bischof JM; Williams SH; Soares MB; Harris A
    Am J Respir Cell Mol Biol; 2010 Sep; 43(3):334-41. PubMed ID: 19855085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal regulation of CFTR expression during ovine lung development: implications for CF gene therapy.
    Broackes-Carter FC; Mouchel N; Gill D; Hyde S; Bassett J; Harris A
    Hum Mol Genet; 2002 Jan; 11(2):125-31. PubMed ID: 11809721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a DNase I hypersensitive site located -20.9 kb upstream of the CFTR gene.
    Nuthall HN; Vassaux G; Huxley C; Harris A
    Eur J Biochem; 1999 Dec; 266(2):431-43. PubMed ID: 10561583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atypical 5' splice sites cause CFTR exon 9 to be vulnerable to skipping.
    Hefferon TW; Broackes-Carter FC; Harris A; Cutting GR
    Am J Hum Genet; 2002 Aug; 71(2):294-303. PubMed ID: 12068373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-specific in vivo transcription start sites of the human and murine cystic fibrosis genes.
    White NL; Higgins CF; Trezise AE
    Hum Mol Genet; 1998 Mar; 7(3):363-9. PubMed ID: 9466991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative splicing of intron 23 of the human cystic fibrosis transmembrane conductance regulator gene resulting in a novel exon and transcript coding for a shortened intracytoplasmic C terminus.
    Yoshimura K; Chu CS; Crystal RG
    J Biol Chem; 1993 Jan; 268(1):686-90. PubMed ID: 7678008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-ordinate regulation of the cystic fibrosis and multidrug resistance genes in cystic fibrosis knockout mice.
    Trezise AE; Ratcliff R; Hawkins TE; Evans MJ; Freeman TC; Romano PR; Higgins CF; Colledge WH
    Hum Mol Genet; 1997 Apr; 6(4):527-37. PubMed ID: 9097955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel first exons in Ad4BP/SF-1 (NR5A1) gene and their tissue- and species-specific usage.
    Kimura R; Yoshii H; Nomura M; Kotomura N; Mukai T; Ishihara S; Ohba K; Yanase T; Gotoh O; Nawata H; Morohashi K
    Biochem Biophys Res Commun; 2000 Nov; 278(1):63-71. PubMed ID: 11071856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental expression patterns of CFTR in ferret tracheal surface airway and submucosal gland epithelia.
    Sehgal A; Presente A; Engelhardt JF
    Am J Respir Cell Mol Biol; 1996 Jul; 15(1):122-31. PubMed ID: 8679216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel donor splice site characterized by CFTR mRNA analysis induces a new pseudo-exon in CF patients.
    Costantino L; Claut L; Paracchini V; Coviello DA; Colombo C; Porcaro L; Capasso P; Zanardelli M; Pizzamiglio G; Degiorgio D; Seia M
    J Cyst Fibros; 2010 Dec; 9(6):411-8. PubMed ID: 20875776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of common single-nucleotide polymorphisms on exon 9 and exon 12 skipping in nonmutated CFTR alleles.
    Steiner B; Truninger K; Sanz J; Schaller A; Gallati S
    Hum Mutat; 2004 Aug; 24(2):120-9. PubMed ID: 15241793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional adaptation to cystic fibrosis transmembrane conductance regulator deficiency.
    Xu Y; Clark JC; Aronow BJ; Dey CR; Liu C; Wooldridge JL; Whitsett JA
    J Biol Chem; 2003 Feb; 278(9):7674-82. PubMed ID: 12482874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable levels of normal RNA in different fetal organs carrying a cystic fibrosis transmembrane conductance regulator splicing mutation.
    Chiba-Falek O; Parad RB; Kerem E; Kerem B
    Am J Respir Crit Care Med; 1999 Jun; 159(6):1998-2002. PubMed ID: 10351951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative splicing of a previously unidentified CFTR exon introduces an in-frame stop codon 5' of the R region.
    Melo CA; Serra C; Stoyanova V; Aguzzoli C; Faraguna D; Tamanini A; Berton G; Cabrini G; Baralle FE
    FEBS Lett; 1993 Aug; 329(1-2):159-62. PubMed ID: 7689062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of an abundant alternatively spliced form of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is not associated with a cAMP-activated chloride conductance.
    Strong TV; Wilkinson DJ; Mansoura MK; Devor DC; Henze K; Yang Y; Wilson JM; Cohn JA; Dawson DC; Frizzell RA
    Hum Mol Genet; 1993 Mar; 2(3):225-30. PubMed ID: 7684641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small nuclear RNAs U11 and U12 modulate expression of TNR-CFTR mRNA in mammalian kidneys.
    Souza-Menezes J; Tukaye DN; Novaira HJ; Guggino WB; Morales MM
    Cell Physiol Biochem; 2008; 22(1-4):93-100. PubMed ID: 18769035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of cis-acting elements regulating the alternative splicing of human CFTR exon 9.
    Niksic M; Romano M; Buratti E; Pagani F; Baralle FE
    Hum Mol Genet; 1999 Dec; 8(13):2339-49. PubMed ID: 10556281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.