These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 12652026)

  • 1. Modeling of biomedical interfaces with nonlinear friction properties.
    Mesfar W; Shirazi-Adl A; Dammak M
    Biomed Mater Eng; 2003; 13(1):91-101. PubMed ID: 12652026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants.
    Shirazi-Adl A; Dammak M; Paiement G
    J Biomed Mater Res; 1993 Feb; 27(2):167-75. PubMed ID: 8436573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite Element Analysis of Tibial Implants - Effect of Fixation Design and Friction Model.
    Hashemi A; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2000; 3(3):183-201. PubMed ID: 11264847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bidirectional friction study of cancellous bone-porous coated metal interface.
    Hashemi A; Shirazi-Adl A; Dammak M
    J Biomed Mater Res; 1996; 33(4):257-67. PubMed ID: 8953391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characteristics of the stem-cement interface.
    Mann KA; Bartel DL; Wright TM; Ingraffea AR
    J Orthop Res; 1991 Nov; 9(6):798-808. PubMed ID: 1919842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of cementless implants using interface nonlinear friction--experimental and finite element studies.
    Dammak M; Shirazi-Adl A; Zukor DJ
    J Biomech; 1997 Feb; 30(2):121-9. PubMed ID: 9001932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.
    Shang X; Yen MR; Gaber MW
    Mol Cell Biomech; 2010 Jun; 7(2):93-104. PubMed ID: 20936741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A constituent-based model for the nonlinear viscoelastic behavior of ligaments.
    Vena P; Gastaldi D; Contro R
    J Biomech Eng; 2006 Jun; 128(3):449-57. PubMed ID: 16706595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Friction properties of the interface between porous-surfaced metals and tibial cancellous bone.
    Rancourt D; Shirazi-Adl A; Drouin G; Paiement G
    J Biomed Mater Res; 1990 Nov; 24(11):1503-19. PubMed ID: 2279983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of three variables on the stresses in a three-dimensional model of a proximal tibia-total knee implant construct.
    Sarathi Kopparti P; Lewis G
    Biomed Mater Eng; 2007; 17(1):19-28. PubMed ID: 17264384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a finite element model of the human metacarpal.
    Barker DS; Netherway DJ; Krishnan J; Hearn TC
    Med Eng Phys; 2005 Mar; 27(2):103-13. PubMed ID: 15642506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can loaded interface characteristics influence strain distributions in muscle adjacent to bony prominences?
    Oomens CW; Bressers OF; Bosboom EM; Bouten CV; Blader DL
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):171-80. PubMed ID: 12888429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a thin HA coating on the stress/strain distribution in bone around dental implants using three-dimensional finite element analysis.
    Aoki H; Ozeki K; Ohtani Y; Fukui Y; Asaoka T
    Biomed Mater Eng; 2006; 16(3):157-69. PubMed ID: 16518015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonlinear finite element model of cartilage growth.
    Davol A; Bingham MS; Sah RL; Klisch SM
    Biomech Model Mechanobiol; 2008 Aug; 7(4):295-307. PubMed ID: 17701433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear shear wave interaction at a frictional interface: energy dissipation and generation of harmonics.
    Meziane A; Norris AN; Shuvalov AL
    J Acoust Soc Am; 2011 Oct; 130(4):1820-8. PubMed ID: 21973335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response.
    Carnelli D; Lucchini R; Ponzoni M; Contro R; Vena P
    J Biomech; 2011 Jul; 44(10):1852-8. PubMed ID: 21570077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified Coulomb's law for the tangential debonding of osseointegrated implants.
    Immel K; Duong TX; Nguyen VH; Haïat G; Sauer RA
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1091-1108. PubMed ID: 31916014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.