BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 12652481)

  • 1. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds.
    Baier Leach J; Bivens KA; Patrick CW; Schmidt CE
    Biotechnol Bioeng; 2003 Jun; 82(5):578-89. PubMed ID: 12652481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds.
    Leach JB; Schmidt CE
    Biomaterials; 2005 Jan; 26(2):125-35. PubMed ID: 15207459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photopatterned anisotropic swelling of dual-crosslinked hyaluronic acid hydrogels.
    Zawko SA; Suri S; Truong Q; Schmidt CE
    Acta Biomater; 2009 Jan; 5(1):14-22. PubMed ID: 18929518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells.
    Masters KS; Shah DN; Leinwand LA; Anseth KS
    Biomaterials; 2005 May; 26(15):2517-25. PubMed ID: 15585254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials.
    Masters KS; Shah DN; Walker G; Leinwand LA; Anseth KS
    J Biomed Mater Res A; 2004 Oct; 71(1):172-80. PubMed ID: 15368267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility.
    Vermonden T; Fedorovich NE; van Geemen D; Alblas J; van Nostrum CF; Dhert WJ; Hennink WE
    Biomacromolecules; 2008 Mar; 9(3):919-26. PubMed ID: 18288801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and degradation test of hyaluronic acid hydrogels.
    Hahn SK; Park JK; Tomimatsu T; Shimoboji T
    Int J Biol Macromol; 2007 Mar; 40(4):374-80. PubMed ID: 17101173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of photocrosslinkable hyaluronic acid-polyethylene glycol-peptide composite hydrogels for soft tissue engineering.
    Leach JB; Bivens KA; Collins CN; Schmidt CE
    J Biomed Mater Res A; 2004 Jul; 70(1):74-82. PubMed ID: 15174111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering.
    Yoo HS; Lee EA; Yoon JJ; Park TG
    Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice.
    Rücker M; Laschke MW; Junker D; Carvalho C; Schramm A; Mülhaupt R; Gellrich NC; Menger MD
    Biomaterials; 2006 Oct; 27(29):5027-38. PubMed ID: 16769111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells.
    Lu PL; Lai JY; Ma DH; Hsiue GH
    J Biomater Sci Polym Ed; 2008; 19(1):1-18. PubMed ID: 18177550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds.
    Bhattacharyya S; Guillot S; Dabboue H; Tranchant JF; Salvetat JP
    Biomacromolecules; 2008 Feb; 9(2):505-9. PubMed ID: 18186607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants.
    Peattie RA; Rieke ER; Hewett EM; Fisher RJ; Shu XZ; Prestwich GD
    Biomaterials; 2006 Mar; 27(9):1868-75. PubMed ID: 16246413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds.
    Kim J; Lee KW; Hefferan TE; Currier BL; Yaszemski MJ; Lu L
    Biomacromolecules; 2008 Jan; 9(1):149-57. PubMed ID: 18072747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering.
    Shu XZ; Ahmad S; Liu Y; Prestwich GD
    J Biomed Mater Res A; 2006 Dec; 79(4):902-12. PubMed ID: 16941590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair.
    Söntjens SH; Nettles DL; Carnahan MA; Setton LA; Grinstaff MW
    Biomacromolecules; 2006 Jan; 7(1):310-6. PubMed ID: 16398530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds.
    Balakrishnan B; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic three-dimensional peptide channels guide neurite outgrowth within a biodegradable hydrogel matrix.
    Musoke-Zawedde P; Shoichet MS
    Biomed Mater; 2006 Sep; 1(3):162-9. PubMed ID: 18458398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.