These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 12652532)

  • 1. Muscle glycogenolysis is not activated by changes in cytosolic P-metabolites: a 31P and 1H MRS demonstration.
    Hsu AC; Dawson MJ
    Magn Reson Med; 2003 Apr; 49(4):626-31. PubMed ID: 12652532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle studied by 31P magnetic resonance spectroscopy.
    Kemp GJ; Sanderson AL; Thompson CH; Radda GK
    NMR Biomed; 1996 Sep; 9(6):261-70. PubMed ID: 9073304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review.
    Kemp GJ; Meyerspeer M; Moser E
    NMR Biomed; 2007 Oct; 20(6):555-65. PubMed ID: 17628042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 31P NMR study of the regulation of glycogenolysis in iodoacetate-treated skeletal muscle.
    Yamada T; Sugi H
    Adv Exp Med Biol; 1988; 226():449-56. PubMed ID: 3407526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of 1H and 31P MRS analyses of lactate in skeletal muscle.
    Hsu AC; Dawson MJ
    Magn Reson Med; 2000 Sep; 44(3):418-26. PubMed ID: 10975894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear magnetic resonance studies on the mechanism of regulation of glycogenolysis in contracting skeletal muscle.
    Sugi H; Yamada T
    Biomed Biochim Acta; 1989; 48(5-6):S335-40. PubMed ID: 2787984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of glycolysis in contracting skeletal muscle. II. Turning it off.
    Crowther GJ; Kemper WF; Carey MF; Conley KE
    Am J Physiol Endocrinol Metab; 2002 Jan; 282(1):E74-9. PubMed ID: 11739086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-energy phosphate metabolism in the exercising muscle of patients with peripheral arterial disease.
    Schocke M; Esterhammer R; Greiner A
    Vasa; 2008 Aug; 37(3):199-210. PubMed ID: 18690587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle energy metabolism and nutritional status in patients with chronic obstructive pulmonary disease. A 31P magnetic resonance study.
    Kutsuzawa T; Shioya S; Kurita D; Haida M; Ohta Y; Yamabayashi H
    Am J Respir Crit Care Med; 1995 Aug; 152(2):647-52. PubMed ID: 7633721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of adrenaline on glycogenolysis in resting anaerobic frog muscles studied by 31P-NMR.
    Kikuchi K; Yamada T; Sugi H
    J Physiol Sci; 2009 Nov; 59(6):439-46. PubMed ID: 19669390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological constraints on changes in pH and phosphorus metabolite concentrations in ischemically exercising muscle: implications for metabolic control and for the interpretation of 31P-magnetic resonance spectroscopic studies.
    Kemp GJ
    MAGMA; 1997 Sep; 5(3):231-41. PubMed ID: 9351027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of glycogenolysis in contracting frog skeletal muscle studied by 31P nuclear magnetic resonance.
    Yamada T; Sugi H
    Prog Clin Biol Res; 1989; 315():149-57. PubMed ID: 2798485
    [No Abstract]   [Full Text] [Related]  

  • 14. A gated 31P NMR method for the estimation of phosphocreatine recovery time and contractile ATP cost in human muscle.
    Slade JM; Towse TF; Delano MC; Wiseman RW; Meyer RA
    NMR Biomed; 2006 Aug; 19(5):573-80. PubMed ID: 16642462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature and pH dependence of energy balance by (31)P- and (1)H-MRS in anaerobic frog muscle.
    Vezzoli A; Gussoni M; Greco F; Zetta L; Cerretelli P
    Biochim Biophys Acta; 2004 Feb; 1608(2-3):163-70. PubMed ID: 14871494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo modular control analysis of energy metabolism in contracting skeletal muscle.
    Arsac LM; Beuste C; Miraux S; Deschodt-Arsac V; Thiaudiere E; Franconi JM; Diolez PH
    Biochem J; 2008 Sep; 414(3):391-7. PubMed ID: 18498244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphocreatine kinetics in humans during exercise and recovery.
    McCann DJ; Molé PA; Caton JR
    Med Sci Sports Exerc; 1995 Mar; 27(3):378-89. PubMed ID: 7752865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P-MRS characterization of sprint and endurance trained athletes.
    Johansen L; Quistorff B
    Int J Sports Med; 2003 Apr; 24(3):183-9. PubMed ID: 12740736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics of muscle contraction: the whole is less than the sum of its parts.
    Kushmerick MJ; Conley KE
    Biochem Soc Trans; 2002 Apr; 30(2):227-31. PubMed ID: 12023856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of perfused pig intercostal muscles evaluated by 31P-magnetic resonance spectroscopy.
    Pedersen BL; Arendrup H; Secher NH; Quistorff B
    Exp Physiol; 2006 Jul; 91(4):755-63. PubMed ID: 16675500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.