BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12653505)

  • 1. Prediction of aqueous solubility of organic compounds based on a 3D structure representation.
    Yan A; Gasteiger J
    J Chem Inf Comput Sci; 2003; 43(2):429-34. PubMed ID: 12653505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of Gibbs energy of formation of organic compounds by linear and nonlinear methods.
    Yan A
    J Chem Inf Model; 2006; 46(6):2299-304. PubMed ID: 17125172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method.
    Wegner JK; Zell A
    J Chem Inf Comput Sci; 2003; 43(3):1077-84. PubMed ID: 12767167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear and nonlinear functions on modeling of aqueous solubility of organic compounds by two structure representation methods.
    Yan A; Gasteiger J; Krug M; Anzali S
    J Comput Aided Mol Des; 2004 Feb; 18(2):75-87. PubMed ID: 15287695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation.
    Votano JR; Parham M; Hall LH; Kier LB; Hall LM
    Chem Biodivers; 2004 Nov; 1(11):1829-41. PubMed ID: 17191819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach.
    Hou TJ; Xia K; Zhang W; Xu XJ
    J Chem Inf Comput Sci; 2004; 44(1):266-75. PubMed ID: 14741036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of pKa values for aliphatic carboxylic acids and alcohols with empirical atomic charge descriptors.
    Zhang J; Kleinöder T; Gasteiger J
    J Chem Inf Model; 2006; 46(6):2256-66. PubMed ID: 17125168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kohonen network study of aromatic compounds based on electronic and nonelectronic structure descriptors.
    Panek JJ; Jezierska A; Vracko M
    J Chem Inf Model; 2005; 45(2):264-72. PubMed ID: 15807487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media.
    Ghasemi JB; Abdolmaleki A; Mandoumi N
    J Hazard Mater; 2009 Jan; 161(1):74-80. PubMed ID: 18456399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of soil sorption coefficient of a diverse set of organic chemicals from molecular structure.
    Huuskonen J
    J Chem Inf Comput Sci; 2003; 43(5):1457-62. PubMed ID: 14502478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices.
    Wang R; Jiang J; Pan Y; Cao H; Cui Y
    J Hazard Mater; 2009 Jul; 166(1):155-86. PubMed ID: 19101083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico prediction of buffer solubility based on quantum-mechanical and HQSAR- and topology-based descriptors.
    Göller AH; Hennemann M; Keldenich J; Clark T
    J Chem Inf Model; 2006; 46(2):648-58. PubMed ID: 16562995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General melting point prediction based on a diverse compound data set and artificial neural networks.
    Karthikeyan M; Glen RC; Bender A
    J Chem Inf Model; 2005; 45(3):581-90. PubMed ID: 15921448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-lambda(max) relationship study on flavones by heuristic method and radial basis function neural network.
    Liu H; Wen Y; Luan F; Gao Y; Li X
    Anal Chim Acta; 2009 Sep; 649(1):52-61. PubMed ID: 19664462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of cyclin-dependent kinase inhibition by 1H-pyrazolo[3,4-d]pyrimidine derivatives using artificial neural network ensembles.
    Fernández M; Tundidor-Camba A; Caballero J
    J Chem Inf Model; 2005; 45(6):1884-95. PubMed ID: 16309296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores.
    Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A
    J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSAR modeling of anti-invasive activity of organic compounds using structural descriptors.
    Katritzky AR; Kuanar M; Dobchev DA; Vanhoecke BW; Karelson M; Parmar VS; Stevens CV; Bracke ME
    Bioorg Med Chem; 2006 Oct; 14(20):6933-9. PubMed ID: 16908166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-property relationship study of n-octanol-water partition coefficients of some of diverse drugs using multiple linear regression.
    Ghasemi J; Saaidpour S
    Anal Chim Acta; 2007 Dec; 604(2):99-106. PubMed ID: 17996529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling aqueous solubility.
    Butina D; Gola JM
    J Chem Inf Comput Sci; 2003; 43(3):837-41. PubMed ID: 12767141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.