These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 12653566)
1. pH-induced alteration and oxidative destruction of heme in purified chromaffin granule cytochrome b(561): implications for the oxidative stress in catecholaminergic neurons. Wanduragala S; Wimalasena DS; Haines DC; Kahol PK; Wimalasena K Biochemistry; 2003 Apr; 42(12):3617-26. PubMed ID: 12653566 [TBL] [Abstract][Full Text] [Related]
2. Selective perturbation of the intravesicular heme center of cytochrome b561 by cysteinyl modification with 4,4'-dithiodipyridine. Takeuchi F; Hori H; Tsubaki M J Biochem; 2005 Dec; 138(6):751-62. PubMed ID: 16428304 [TBL] [Abstract][Full Text] [Related]
3. Electron transfer across the O2- generating flavocytochrome b of neutrophils. Evidence for a transition from a low-spin state to a high-spin state of the heme iron component. Doussière J; Gaillard J; Vignais PV Biochemistry; 1996 Oct; 35(41):13400-10. PubMed ID: 8873608 [TBL] [Abstract][Full Text] [Related]
4. Stopped-flow analyses on the reaction of ascorbate with cytochrome b561 purified from bovine chromaffin vesicle membranes. Takigami T; Takeuchi F; Nakagawa M; Hase T; Tsubaki M Biochemistry; 2003 Jul; 42(27):8110-8. PubMed ID: 12846560 [TBL] [Abstract][Full Text] [Related]
5. Redox properties of the photosystem II cytochromes b559 and c550 in the cyanobacterium Thermosynechococcus elongatus. Roncel M; Boussac A; Zurita JL; Bottin H; Sugiura M; Kirilovsky D; Ortega JM J Biol Inorg Chem; 2003 Jan; 8(1-2):206-16. PubMed ID: 12459916 [TBL] [Abstract][Full Text] [Related]
6. The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds. Doussiere J; Gaillard J; Vignais PV Biochemistry; 1999 Mar; 38(12):3694-703. PubMed ID: 10090757 [TBL] [Abstract][Full Text] [Related]
7. Water-hydroxide exchange reactions at the catalytic site of heme-copper oxidases. Brändén M; Namslauer A; Hansson O; Aasa R; Brzezinski P Biochemistry; 2003 Nov; 42(45):13178-84. PubMed ID: 14609328 [TBL] [Abstract][Full Text] [Related]
8. Properties of two distinct heme centers of cytochrome b561 from bovine chromaffin vesicles studied by EPR, resonance Raman, and ascorbate reduction assay. Takeuchi F; Hori H; Obayashi E; Shiro Y; Tsubaki M J Biochem; 2004 Jan; 135(1):53-64. PubMed ID: 14999009 [TBL] [Abstract][Full Text] [Related]
9. Existence of two heme B centers in cytochrome b561 from bovine adrenal chromaffin vesicles as revealed by a new purification procedure and EPR spectroscopy. Tsubaki M; Nakayama M; Okuyama E; Ichikawa Y; Hori H J Biol Chem; 1997 Sep; 272(37):23206-10. PubMed ID: 9287327 [TBL] [Abstract][Full Text] [Related]
10. Cytochrome rC552, formed during expression of the truncated, Thermus thermophilus cytochrome c552 gene in the cytoplasm of Escherichia coli, reacts spontaneously to form protein-bound 2-formyl-4-vinyl (Spirographis) heme. Fee JA; Todaro TR; Luna E; Sanders D; Hunsicker-Wang LM; Patel KM; Bren KL; Gomez-Moran E; Hill MG; Ai J; Loehr TM; Oertling WA; Williams PA; Stout CD; McRee D; Pastuszyn A Biochemistry; 2004 Sep; 43(38):12162-76. PubMed ID: 15379555 [TBL] [Abstract][Full Text] [Related]
11. Chromaffin granule membranes contain at least three heme centers: direct evidence from EPR and absorption spectroscopy. Kamensky YA; Palmer G FEBS Lett; 2001 Feb; 491(1-2):119-22. PubMed ID: 11226432 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic and biophysical characterization of cytochrome P450 BioI from Bacillus subtilis. Lawson RJ; Leys D; Sutcliffe MJ; Kemp CA; Cheesman MR; Smith SJ; Clarkson J; Smith WE; Haq I; Perkins JB; Munro AW Biochemistry; 2004 Oct; 43(39):12410-26. PubMed ID: 15449931 [TBL] [Abstract][Full Text] [Related]
13. Ferric species of the giant extracellular hemoglobin of Glossoscolex paulistus as function of pH: an EPR study on the irreversibility of the heme transitions. Moreira LM; Poli AL; Lyon JP; Saade J; Costa-Filho AJ; Imasato H Comp Biochem Physiol B Biochem Mol Biol; 2008 Jul; 150(3):292-300. PubMed ID: 18485775 [TBL] [Abstract][Full Text] [Related]
14. NO binding and dynamics in reduced heme-copper oxidases aa3 from Paracoccus denitrificans and ba3 from Thermus thermophilus. Pilet E; Nitschke W; Rappaport F; Soulimane T; Lambry JC; Liebl U; Vos MH Biochemistry; 2004 Nov; 43(44):14118-27. PubMed ID: 15518562 [TBL] [Abstract][Full Text] [Related]
15. The nature of the exchange coupling between high-spin Fe(III) heme o3 and CuBII in Escherichia coli quinol oxidase, cytochrome bo3: MCD and EPR studies. Cheesman MR; Oganesyan VS; Watmough NJ; Butler CS; Thomson AJ J Am Chem Soc; 2004 Apr; 126(13):4157-66. PubMed ID: 15053605 [TBL] [Abstract][Full Text] [Related]
16. Protonation of two adjacent tyrosine residues influences the reduction of cytochrome c by diphenylacetaldehyde: a possible mechanism to select the reducer agent of heme iron. Rinaldi TA; Tersariol IL; Dyszy FH; Prado FM; Nascimento OR; Di Mascio P; Nantes IL Free Radic Biol Med; 2004 Mar; 36(6):802-10. PubMed ID: 14990358 [TBL] [Abstract][Full Text] [Related]
17. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase. Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794 [TBL] [Abstract][Full Text] [Related]
18. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases. Zhao X; Nilges MJ; Lu Y Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389 [TBL] [Abstract][Full Text] [Related]
19. Conversion of the Escherichia coli cytochrome b562 to an archetype cytochrome b: a mutant with bis-histidine ligation of heme iron. Hay S; Wydrzynski T Biochemistry; 2005 Jan; 44(1):431-9. PubMed ID: 15628885 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic evidence of the role of an axial ligand histidinate in the mechanism of adrenal cytochrome b561. da Silva GF; Shinkarev VP; Kamensky YA; Palmer G Biochemistry; 2012 Nov; 51(44):8730-42. PubMed ID: 23088392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]