These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12653977)

  • 1. Mechanisms underlying the noradrenergic modulation of longitudinal coordination during swimming in Xenopus laevis tadpoles.
    Merrywest SD; McDearmid JR; Kjaerulff O; Kiehn O; Sillar KT
    Eur J Neurosci; 2003 Mar; 17(5):1013-22. PubMed ID: 12653977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha-adrenoreceptor activation modulates swimming via glycinergic and GABAergic inhibitory pathways in Xenopus laevis tadpoles.
    Merrywest SD; Fischer H; Sillar KT
    Eur J Neurosci; 2002 Jan; 15(2):375-83. PubMed ID: 11849303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional projection distances of spinal interneurons mediating reciprocal inhibition during swimming in Xenopus tadpoles.
    Soffe SR; Zhao FY; Roberts A
    Eur J Neurosci; 2001 Feb; 13(3):617-27. PubMed ID: 11168570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles.
    Perrins R; Walford A; Roberts A
    J Neurosci; 2002 May; 22(10):4229-40. PubMed ID: 12019340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenoreceptor-mediated modulation of the spinal locomotor pattern during swimming in Xenopus laevis tadpoles.
    Fischer H; Merrywest SD; Sillar KT
    Eur J Neurosci; 2001 Mar; 13(5):977-86. PubMed ID: 11264670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal coordination of motor output during swimming in Xenopus embryos.
    Tunstall MJ; Roberts A
    Proc Biol Sci; 1991 Apr; 244(1309):27-32. PubMed ID: 1677193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The neuronal targets for GABAergic reticulospinal inhibition that stops swimming in hatchling frog tadpoles.
    Li WC; Perrins R; Walford A; Roberts A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jan; 189(1):29-37. PubMed ID: 12548427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal distribution of components of excitatory synaptic input to motoneurones during swimming in young Xenopus tadpoles: experiments with antagonists.
    Zhao FY; Wolf E; Roberts A
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):887-901. PubMed ID: 9714868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metamodulation of a spinal locomotor network by nitric oxide.
    McLean DL; Sillar KT
    J Neurosci; 2004 Oct; 24(43):9561-71. PubMed ID: 15509743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminergic modulation of glycine release in a spinal network controlling swimming in Xenopus laevis.
    McDearmid JR; Scrymgeour-Wedderburn JF; Sillar KT
    J Physiol; 1997 Aug; 503 ( Pt 1)(Pt 1):111-7. PubMed ID: 9288679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos.
    Perrins R; Soffe SR
    J Neurophysiol; 1996 Aug; 76(2):1025-35. PubMed ID: 8871217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles.
    Green CS; Soffe SR
    J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide selectively tunes inhibitory synapses to modulate vertebrate locomotion.
    McLean DL; Sillar KT
    J Neurosci; 2002 May; 22(10):4175-84. PubMed ID: 12019335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms.
    Li WC
    J Neurosci; 2015 Jul; 35(27):9799-810. PubMed ID: 26156983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal gradients in the spinal cord of Xenopus embryos and their possible role in coordination of swimming.
    Roberts A; Tunstall MJ
    Eur J Morphol; 1994 Aug; 32(2-4):176-84. PubMed ID: 7803164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey.
    Rovainen CM
    J Neurophysiol; 1985 Oct; 54(4):959-77. PubMed ID: 2999351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Xenopus Tadpole Locomotion via Selective Expression of Ih in Excitatory Interneurons.
    Picton LD; Sillar KT; Zhang HY
    Curr Biol; 2018 Dec; 28(24):3911-3923.e2. PubMed ID: 30503615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying the activity-dependent regulation of locomotor network performance by the Na+ pump.
    Zhang HY; Picton L; Li WC; Sillar KT
    Sci Rep; 2015 Nov; 5():16188. PubMed ID: 26541477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated motor activity in simulated spinal networks emerges from simple biologically plausible rules of connectivity.
    Dale N
    J Comput Neurosci; 2003; 14(1):55-70. PubMed ID: 12435924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Group I mGluRs increase locomotor network excitability in Xenopus tadpoles via presynaptic inhibition of glycinergic neurotransmission.
    Chapman RJ; Issberner JP; Sillar KT
    Eur J Neurosci; 2008 Sep; 28(5):903-13. PubMed ID: 18691329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.