BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12653979)

  • 1. D2 Dopamine receptor blockade results in sprouting of DA axons in the intact animal but prevents sprouting following nigral lesions.
    Tripanichkul W; Stanic D; Drago J; Finkelstein DI; Horne MK
    Eur J Neurosci; 2003 Mar; 17(5):1033-45. PubMed ID: 12653979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of dopamine receptors in regulating the size of axonal arbors.
    Parish CL; Finkelstein DI; Drago J; Borrelli E; Horne MK
    J Neurosci; 2001 Jul; 21(14):5147-57. PubMed ID: 11438590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of interleukin-1, interleukin-6, and glia in inducing growth of neuronal terminal arbors in mice.
    Parish CL; Finkelstein DI; Tripanichkul W; Satoskar AR; Drago J; Horne MK
    J Neurosci; 2002 Sep; 22(18):8034-41. PubMed ID: 12223557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal sprouting following lesions of the rat substantia nigra.
    Finkelstein DI; Stanic D; Parish CL; Tomas D; Dickson K; Horne MK
    Neuroscience; 2000; 97(1):99-112. PubMed ID: 10877666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timecourse of striatal re-innervation following lesions of dopaminergic SNpc neurons of the rat.
    Stanic D; Finkelstein DI; Bourke DW; Drago J; Horne MK
    Eur J Neurosci; 2003 Sep; 18(5):1175-88. PubMed ID: 12956716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of long-term treatment with dopamine receptor agonists and antagonists on terminal arbor size.
    Parish CL; Stanic D; Drago J; Borrelli E; Finkelstein DI; Horne MK
    Eur J Neurosci; 2002 Sep; 16(5):787-94. PubMed ID: 12372014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in function and ultrastructure of striatal dopaminergic terminals that regenerate following partial lesions of the SNpc.
    Stanic D; Parish CL; Zhu WM; Krstew EV; Lawrence AJ; Drago J; Finkelstein DI; Horne MK
    J Neurochem; 2003 Jul; 86(2):329-43. PubMed ID: 12871574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation.
    Proença MB; Dombrowski PA; Da Cunha C; Fischer L; Ferraz AC; Lima MM
    Neuropharmacology; 2014 Jan; 76 Pt A():118-26. PubMed ID: 24012539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial responses associated with dopaminergic striatal reinnervation following lesions of the rat substantia nigra.
    Stanic D; Tripanichkul W; Drago J; Finkelstein DI; Horne MK
    Brain Res; 2004 Oct; 1023(1):83-91. PubMed ID: 15364022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term changes in morphology, D2R expression and targets of regenerated dopaminergic terminals in the striatum after a partial lesion in the substantia nigra in the rat.
    Zeng X; Shen H; Zhao J; Cai Q; Wang C; Xu Q
    Brain Res; 2012 Apr; 1450():166-73. PubMed ID: 22424788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of D1 and D2 dopamine receptor stimulation on the activity of substantia nigra pars reticulata neurons in 6-hydroxydopamine lesioned rats: D1/D2 coactivation induces potentiated responses.
    Weick BG; Walters JR
    Brain Res; 1987 Mar; 405(2):234-46. PubMed ID: 2952219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of risperidone, clozapine and haloperidol on extracellular recordings of substantia nigra reticulata neurons of the rat brain.
    Bruggeman R; Westerink BH; Timmerman W
    Eur J Pharmacol; 1997 Apr; 324(1):49-56. PubMed ID: 9137912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine D2, receptor-mediated modulation of the GABAergic inhibition of substantia nigra pars reticulata neurons.
    Martin LP; Waszczak BL
    Brain Res; 1996 Aug; 729(2):156-69. PubMed ID: 8876984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal localization and modulation of the D2 dopamine receptor mRNA in brain of normal mice and mice lesioned with 6-hydroxydopamine.
    Chen JF; Qin ZH; Szele F; Bai G; Weiss B
    Neuropharmacology; 1991 Sep; 30(9):927-41. PubMed ID: 1833662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striatal dopamine-NMDA receptor interactions in the modulation of glutamate release in the substantia nigra pars reticulata in vivo: opposite role for D1 and D2 receptors.
    Marti M; Mela F; Bianchi C; Beani L; Morari M
    J Neurochem; 2002 Nov; 83(3):635-44. PubMed ID: 12390525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphologically distinct subpopulations of neurotensin-immunoreactive striatal neurons observed in rat following dopamine depletions and D2 receptor blockade project to the globus pallidus.
    Brog JS; Zahm DS
    Neuroscience; 1996 Oct; 74(3):805-12. PubMed ID: 8884776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of deltaFosB-like protein(s) in both the rodent and primate striatum.
    Doucet JP; Nakabeppu Y; Bedard PJ; Hope BT; Nestler EJ; Jasmin BJ; Chen JS; Iadarola MJ; St-Jean M; Wigle N; Blanchet P; Grondin R; Robertson GS
    Eur J Neurosci; 1996 Feb; 8(2):365-81. PubMed ID: 8714707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopaminergic neuroprotection and regeneration by neurturin assessed by using behavioral, biochemical and histochemical measurements in a model of progressive Parkinson's disease.
    Oiwa Y; Yoshimura R; Nakai K; Itakura T
    Brain Res; 2002 Aug; 947(2):271-83. PubMed ID: 12176170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopaminergic regulation of serotonin release in the substantia nigra of the freely moving rat using microdialysis.
    Thorré K; Sarre S; Smolders I; Ebinger G; Michotte Y
    Brain Res; 1998 Jun; 796(1-2):107-16. PubMed ID: 9689460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of dopamine D1 and D2 receptors with specific cellular elements in the basal ganglia of the cat: the uneven topography of dopamine receptors in the striatum is determined by intrinsic striatal cells, not nigrostriatal axons.
    Beckstead RM
    Neuroscience; 1988 Dec; 27(3):851-63. PubMed ID: 3150855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.