BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12654000)

  • 1. Connection of transport and sensing by UhpC, the sensor for external glucose-6-phosphate in Escherichia coli.
    Schwöppe C; Winkler HH; Neuhaus HE
    Eur J Biochem; 2003 Apr; 270(7):1450-7. PubMed ID: 12654000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC).
    Schwöppe C; Winkler HH; Neuhaus HE
    J Bacteriol; 2002 Apr; 184(8):2108-15. PubMed ID: 11914341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Escherichia coli adenylate cyclase activity during hexose phosphate transport.
    Dumay V; Danchin A; Crasnier M
    Microbiology (Reading); 1996 Mar; 142 ( Pt 3)():575-583. PubMed ID: 8868432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The histidine kinase domain of UhpB inhibits UhpA action at the Escherichia coli uhpT promoter.
    Wright JS; Olekhnovich IN; Touchie G; Kadner RJ
    J Bacteriol; 2000 Nov; 182(22):6279-86. PubMed ID: 11053370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between the membrane-associated UhpB and UhpC regulatory proteins.
    Island MD; Kadner RJ
    J Bacteriol; 1993 Aug; 175(16):5028-34. PubMed ID: 8349544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium.
    Island MD; Wei BY; Kadner RJ
    J Bacteriol; 1992 May; 174(9):2754-62. PubMed ID: 1569007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose-6-phosphate-dependent phosphoryl flow through the Uhp two-component regulatory system.
    Verhamme DT; Arents JC; Postma PW; Crielaard W; Hellingwerf KJ
    Microbiology (Reading); 2001 Dec; 147(Pt 12):3345-52. PubMed ID: 11739766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of uhp genes in expression of the Escherichia coli sugar-phosphate transport system.
    Weston LA; Kadner RJ
    J Bacteriol; 1988 Aug; 170(8):3375-83. PubMed ID: 3042748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of two essential arginine residues in UhpT, the sugar phosphate antiporter of Escherichia coli.
    Fann M; Davies AH; Varadhachary A; Kuroda T; Sevier C; Tsuchiya T; Maloney PC
    J Membr Biol; 1998 Jul; 164(2):187-95. PubMed ID: 9662562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperativity in signal transfer through the Uhp system of Escherichia coli.
    Verhamme DT; Postma PW; Crielaard W; Hellingwerf KJ
    J Bacteriol; 2002 Aug; 184(15):4205-10. PubMed ID: 12107138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli.
    Braun V; Herrmann C
    J Bacteriol; 2007 Oct; 189(19):6913-8. PubMed ID: 17660286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered substrate selectivity in a mutant of an intrahelical salt bridge in UhpT, the sugar phosphate carrier of Escherichia coli.
    Hall JA; Fann MC; Maloney PC
    J Biol Chem; 1999 Mar; 274(10):6148-53. PubMed ID: 10037698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The family of organo-phosphate transport proteins includes a transmembrane regulatory protein.
    Kadner RJ; Webber CA; Island MD
    J Bioenerg Biomembr; 1993 Dec; 25(6):637-45. PubMed ID: 8144492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved cytoplasmic loops are important for both the transport and chemotaxis functions of PcaK, a protein from Pseudomonas putida with 12 membrane-spanning regions.
    Ditty JL; Harwood CS
    J Bacteriol; 1999 Aug; 181(16):5068-74. PubMed ID: 10438780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose-6-phosphate transporter and receptor functions of the glucose 6-phosphatase system analyzed from a consensus defined by multiple alignments.
    Méchin MC; van de Werve G
    Proteins; 2000 Nov; 41(2):164-72. PubMed ID: 10966570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a residue in the translocation pathway of a membrane carrier.
    Yan RT; Maloney PC
    Cell; 1993 Oct; 75(1):37-44. PubMed ID: 8402899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Ni2+ binding motif is the basis of high affinity transport of the Alcaligenes eutrophus nickel permease.
    Eitinger T; Wolfram L; Degen O; Anthon C
    J Biol Chem; 1997 Jul; 272(27):17139-44. PubMed ID: 9202033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UhpT, the sugar phosphate antiporter of Escherichia coli, functions as a monomer.
    Ambudkar SV; Anantharam V; Maloney PC
    J Biol Chem; 1990 Jul; 265(21):12287-92. PubMed ID: 2197272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the transport specificity ratio and cysteine-scanning mutagenesis to detect multiple substrate specificity determinants in the consensus amphipathic region of the Escherichia coli GABA (gamma-aminobutyric acid) transporter encoded by gabP.
    King SC; Brown-Istvan L
    Biochem J; 2003 Dec; 376(Pt 3):633-44. PubMed ID: 12956624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmembrane segment 11 of UhpT, the sugar phosphate carrier of Escherichia coli, is an alpha-helix that carries determinants of substrate selectivity.
    Hall JA; Maloney PC
    J Biol Chem; 2001 Jul; 276(27):25107-13. PubMed ID: 11349129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.