BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 12654003)

  • 21. Kinetic studies, mechanism, and substrate specificity of amadoriase I from Aspergillus sp.
    Wu X; Palfey BA; Mossine VV; Monnier VM
    Biochemistry; 2001 Oct; 40(43):12886-95. PubMed ID: 11669625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic aspects of the covalent flavoprotein dimethylglycine oxidase of Arthrobacter globiformis studied by stopped-flow spectrophotometry.
    Basran J; Bhanji N; Basran A; Nietlispach D; Mistry S; Meskys R; Scrutton NS
    Biochemistry; 2002 Apr; 41(14):4733-43. PubMed ID: 11926836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme.
    Trickey P; Wagner MA; Jorns MS; Mathews FS
    Structure; 1999 Mar; 7(3):331-45. PubMed ID: 10368302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maximization of production of his-tagged glycine oxidase and its M261 mutant proteins.
    Martínez-Martínez I; Navarro-Fernandez J; Lozada-Ramírez JD; García-Carmona F; Sanchez-Ferrer A
    Biotechnol Prog; 2006; 22(3):647-52. PubMed ID: 16739945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization and structural modeling of a novel thermostable glycine oxidase from Geobacillus kaustophilus HTA426.
    Martínez-Martínez I; Navarro-Fernández J; García-Carmona F; Takami H; Sánchez-Ferrer A
    Proteins; 2008 Mar; 70(4):1429-41. PubMed ID: 17894345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic mechanisms of cholesterol oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum.
    Pollegioni L; Wels G; Pilone MS; Ghisla S
    Eur J Biochem; 1999 Aug; 264(1):140-51. PubMed ID: 10447682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural Analysis of the Glycine Oxidase Homologue CmiS2 Reveals a Unique Substrate Recognition Mechanism for Formation of a β-Amino Acid Starter Unit in Cremimycin Biosynthesis.
    Kawasaki D; Chisuga T; Miyanaga A; Kudo F; Eguchi T
    Biochemistry; 2019 Jun; 58(24):2706-2709. PubMed ID: 31154757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of a recombinant wild-type and His-tagged Bacillus subtilis glycine oxidase in Escherichia coli.
    Job V; Molla G; Pilone MS; Pollegioni L
    Eur J Biochem; 2002 Mar; 269(5):1456-63. PubMed ID: 11874460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and Enzymatic Properties of an Unusual Cysteine Tryptophylquinone-Dependent Glycine Oxidase from Pseudoalteromonas luteoviolacea.
    Andreo-Vidal A; Mamounis KJ; Sehanobish E; Avalos D; Campillo-Brocal JC; Sanchez-Amat A; Yukl ET; Davidson VL
    Biochemistry; 2018 Feb; 57(7):1155-1165. PubMed ID: 29381339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidation of sarcosine and N-alkyl derivatives of glycine by D-amino-acid oxidase.
    Naoi M; Yagi K
    Biochim Biophys Acta; 1976 Jun; 438(1):61-70. PubMed ID: 7319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving glyphosate oxidation activity of glycine oxidase from Bacillus cereus by directed evolution.
    Zhan T; Zhang K; Chen Y; Lin Y; Wu G; Zhang L; Yao P; Shao Z; Liu Z
    PLoS One; 2013; 8(11):e79175. PubMed ID: 24223901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional analysis of genes encoding putative oxidoreductases in Aspergillus oryzae, which are similar to fungal fructosyl-amino acid oxidase.
    Yoshida N; Akazawa S; Karino T; Ishida H; Hata Y; Katsuragi T; Tani Y; Takagi H
    J Biosci Bioeng; 2007 Nov; 104(5):424-7. PubMed ID: 18086445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsic primary, secondary, and solvent kinetic isotope effects on the reductive half-reaction of D-amino acid oxidase: evidence against a concerted mechanism.
    Denu JM; Fitzpatrick PF
    Biochemistry; 1994 Apr; 33(13):4001-7. PubMed ID: 7908225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the oxygen activation site in monomeric sarcosine oxidase: role of Lys265 in catalysis.
    Zhao G; Bruckner RC; Jorns MS
    Biochemistry; 2008 Sep; 47(35):9124-35. PubMed ID: 18693755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of active-site residues in catalysis, substrate binding, cooperativity, and the reaction mechanism of the quinoprotein glycine oxidase.
    Mamounis KJ; Yukl ET; Davidson VL
    J Biol Chem; 2020 May; 295(19):6472-6481. PubMed ID: 32234764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implication of a mutation in the flavin binding site on the specific activity and substrate specificity of glycine oxidase from Bacillus subtilis produced by directed evolution.
    Martínez-Martínez I; Navarro-Fernández J; García-Carmona F; Sánchez-Ferrer A
    J Biotechnol; 2008 Jan; 133(1):1-8. PubMed ID: 17976850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. pH and kinetic isotope effects on the oxidative half-reaction of D-amino-acid oxidase.
    Denu JM; Fitzpatrick PF
    J Biol Chem; 1994 May; 269(21):15054-9. PubMed ID: 7910822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.