These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 12654262)

  • 1. Structural diversity and isomorphism of hydrogen-bonded base interactions in nucleic acids.
    Walberer BJ; Cheng AC; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):767-80. PubMed ID: 12654262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains.
    Cheng AC; Chen WW; Fuhrmann CN; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):781-96. PubMed ID: 12654263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of crystallographically determined and computationally predicted hydrogen-bonded pairing configurations of nucleic acid bases.
    Ornstein RL; Fresco JR
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5171-5. PubMed ID: 6577415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction.
    Radhakrishnan I; de los Santos C; Patel DJ
    J Mol Biol; 1991 Oct; 221(4):1403-18. PubMed ID: 1942059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs.
    Lee JC; Gutell RR
    J Mol Biol; 2004 Dec; 344(5):1225-49. PubMed ID: 15561141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Database of non-canonical base pairs found in known RNA structures.
    Nagaswamy U; Voss N; Zhang Z; Fox GE
    Nucleic Acids Res; 2000 Jan; 28(1):375-6. PubMed ID: 10592279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequent occurrence of the T-loop RNA folding motif in ribosomal RNAs.
    Nagaswamy U; Fox GE
    RNA; 2002 Sep; 8(9):1112-9. PubMed ID: 12358430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration and stability of nucleic acid bases and base pairs.
    Kabelác M; Hobza P
    Phys Chem Chem Phys; 2007 Feb; 9(8):903-17. PubMed ID: 17301881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing occurrences and functional roles for high energy purine-pyrimidine base-pairs in nucleic acids.
    Kimsey I; Al-Hashimi HM
    Curr Opin Struct Biol; 2014 Feb; 24():72-80. PubMed ID: 24721455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring the conformation of RNA base pairs and triples from patterns of sequence variation.
    Gautheret D; Gutell RR
    Nucleic Acids Res; 1997 Apr; 25(8):1559-64. PubMed ID: 9092662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical characterization of sulfur-to-selenium substitution in an emissive RNA alphabet: impact on H-bonding potential and photophysical properties.
    Chawla M; Poater A; Besalú-Sala P; Kalra K; Oliva R; Cavallo L
    Phys Chem Chem Phys; 2018 Mar; 20(11):7676-7685. PubMed ID: 29497733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Das J; Mukherjee S; Mitra A; Bhattacharyya D
    J Biomol Struct Dyn; 2006 Oct; 24(2):149-61. PubMed ID: 16928138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence and structural conservation in RNA ribose zippers.
    Tamura M; Holbrook SR
    J Mol Biol; 2002 Jul; 320(3):455-74. PubMed ID: 12096903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive survey and geometric classification of base triples in RNA structures.
    Abu Almakarem AS; Petrov AI; Stombaugh J; Zirbel CL; Leontis NB
    Nucleic Acids Res; 2012 Feb; 40(4):1407-23. PubMed ID: 22053086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.
    Millen AL; Churchill CD; Manderville RA; Wetmore SD
    J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR structures of r(GCAGGCGUGC)2 and determinants of stability for single guanosine-guanosine base pairs.
    Burkard ME; Turner DH
    Biochemistry; 2000 Sep; 39(38):11748-62. PubMed ID: 10995243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR structural studies of intramolecular (Y+)n.(R+)n(Y-)nDNA triplexes in solution: imino and amino proton and nitrogen markers of G.TA base triple formation.
    Radhakrishnan I; Gao X; de los Santos C; Live D; Patel DJ
    Biochemistry; 1991 Sep; 30(37):9022-30. PubMed ID: 1654085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Configuration of wobble base pairs having pyrimidines as anticodon wobble bases: significance for codon degeneracy.
    Das G; Lyngdoh RH
    J Biomol Struct Dyn; 2014; 32(9):1500-20. PubMed ID: 23968386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.