BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12654309)

  • 1. Isothermal titration calorimetric procedure to determine protein-metal ion binding parameters in the presence of excess metal ion or chelator.
    Nielsen AD; Fuglsang CC; Westh P
    Anal Biochem; 2003 Mar; 314(2):227-34. PubMed ID: 12654309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proposed mechanism for the thermal denaturation of a recombinant Bacillus halmapalus alpha-amylase--the effect of calcium ions.
    Nielsen AD; Pusey ML; Fuglsang CC; Westh P
    Biochim Biophys Acta; 2003 Nov; 1652(1):52-63. PubMed ID: 14580996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of calcium ions on the irreversible denaturation of a recombinant Bacillus halmapalus alpha-amylase: a calorimetric investigation.
    Nielsen AD; Fuglsang CC; Westh P
    Biochem J; 2003 Jul; 373(Pt 2):337-43. PubMed ID: 12689333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of metal ion binding and denaturation of a calcium binding protein from Entamoeba histolytica.
    Gopal B; Swaminathan CP; Bhattacharya S; Bhattacharya A; Murthy MR; Surolia A
    Biochemistry; 1997 Sep; 36(36):10910-6. PubMed ID: 9283081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct modulation of volume-regulated anion channels by Ca(2+) chelating agents.
    Lemonnier L; Vitko Y; Shuba YM; Vanden Abeele F; Prevarskaya N; Skryma R
    FEBS Lett; 2002 Jun; 521(1-3):152-6. PubMed ID: 12067708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic study of magnesium ion binding to alpha-amylase.
    Saboury AA; Ghasemi S; Dahot MU
    Indian J Biochem Biophys; 2005 Oct; 42(5):326-9. PubMed ID: 23923542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innocuous character of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid and EDTA as metal-ion buffers in studying Ca2+ binding by alpha-lactalbumin.
    Mitani M; Harushima Y; Kuwajima K; Ikeguchi M; Sugai S
    J Biol Chem; 1986 Jul; 261(19):8824-9. PubMed ID: 3087980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of parvalbumin Ca(2+)- and Mg(2+)-binding constants by global least-squares analysis of isothermal titration calorimetry data.
    Henzl MT; Larson JD; Agah S
    Anal Biochem; 2003 Aug; 319(2):216-33. PubMed ID: 12871715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential scanning calorimetric studies of a Bacillus halodurans alpha-amylase.
    Hashim SO; Kaul RH; Andersson M; Mulaa FJ; Mattiasson B
    Biochim Biophys Acta; 2005 May; 1723(1-3):184-91. PubMed ID: 15826839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian analysis of isothermal titration calorimetry for binding thermodynamics.
    Nguyen TH; Rustenburg AS; Krimmer SG; Zhang H; Clark JD; Novick PA; Branson K; Pande VS; Chodera JD; Minh DDL
    PLoS One; 2018; 13(9):e0203224. PubMed ID: 30212471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.
    Krainer G; Keller S
    Methods; 2015 Apr; 76():116-123. PubMed ID: 25461813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On experimental artifacts in the use of metal ion chelators for the determination of the cation binding constants of alpha-lactalbumin. A reply.
    Permyakov EA; Murakami K; Berliner LJ
    J Biol Chem; 1987 Mar; 262(7):3196-8. PubMed ID: 3102484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and energetics of the binding between barley alpha-amylase/subtilisin inhibitor and barley alpha-amylase 2 analyzed by surface plasmon resonance and isothermal titration calorimetry.
    Nielsen PK; Bønsager BC; Berland CR; Sigurskjold BW; Svensson B
    Biochemistry; 2003 Feb; 42(6):1478-87. PubMed ID: 12578360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental artifact in the use of chelating metal ion buffers. Binding of chelators to bovine alpha-lactalbumin.
    Kronman MJ; Bratcher SC
    J Biol Chem; 1983 May; 258(9):5707-9. PubMed ID: 6406505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T-jump study of calcium binding kinetics of calcium chelators.
    Naraghi M
    Cell Calcium; 1997 Oct; 22(4):255-68. PubMed ID: 9481476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of a spectroscopically defined transition by guanidinium hydrochloride on a recombinant calcium binding protein from Entamoeba histolytica.
    Gopal B; Krishna Rao JV; Thomas CJ; Bhattacharya A; Bhattacharya S; Murthy MR; Surolia A
    FEBS Lett; 1998 Dec; 441(1):71-6. PubMed ID: 9877168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase determined by inactivation kinetics.
    Tanaka A; Hoshino E
    Biochem J; 2002 Jun; 364(Pt 3):635-9. PubMed ID: 12049626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In depth, thermodynamic analysis of Ca
    Johnson RA; Fulcher LM; Vang K; Palmer CD; Grossoehme NE; Spuches AM
    Biochim Biophys Acta Proteins Proteom; 2019 Apr; 1867(4):359-366. PubMed ID: 30639425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic superoxide scavenging by metal complexes of the calcium chelator EGTA and contrast agent EHPG.
    Fisher AE; Hague TA; Clarke CL; Naughton DP
    Biochem Biophys Res Commun; 2004 Oct; 323(1):163-7. PubMed ID: 15351716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rationale for local toxicity of calcium chelators.
    Oosterlinck W; Verbeeck R; Cuvelier C; Vergauwe D
    Urol Res; 1992; 20(1):19-21. PubMed ID: 1736482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.