BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 12654343)

  • 1. Mu opioid receptor signaling in morphine sensitization.
    Viganò D; Rubino T; Di Chiara G; Ascari I; Massi P; Parolaro D
    Neuroscience; 2003; 117(4):921-9. PubMed ID: 12654343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chronic ethanol and withdrawal on the mu-opioid receptor- and 5-Hydroxytryptamine(1A) receptor-stimulated binding of [(35)S]Guanosine-5'-O-(3-thio)triphosphate in the fawn-hooded rat brain: A quantitative autoradiography study.
    Chen F; Lawrence AJ
    J Pharmacol Exp Ther; 2000 Apr; 293(1):159-65. PubMed ID: 10734165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms involved in the asymmetric interaction between cannabinoid and opioid systems.
    Viganò D; Rubino T; Vaccani A; Bianchessi S; Marmorato P; Castiglioni C; Parolaro D
    Psychopharmacology (Berl); 2005 Nov; 182(4):527-36. PubMed ID: 16079992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of noninternalizing (herkinorin) and internalizing (DAMGO) mu-opioid agonists on cellular markers related to opioid tolerance and dependence.
    Xu H; Partilla JS; Wang X; Rutherford JM; Tidgewell K; Prisinzano TE; Bohn LM; Rothman RB
    Synapse; 2007 Mar; 61(3):166-75. PubMed ID: 17152090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opioid peptide receptor studies. 17. Attenuation of chronic morphine effects after antisense oligodeoxynucleotide knock-down of RGS9 protein in cells expressing the cloned Mu opioid receptor.
    Xu H; Wang X; Wang J; Rothman RB
    Synapse; 2004 Jun; 52(3):209-17. PubMed ID: 15065220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonistic property of buprenorphine for putative epsilon-opioid receptor-mediated G-protein activation by beta-endorphin in pons/medulla of the mu-opioid receptor knockout mouse.
    Mizoguchi H; Wu HE; Narita M; Hall FS; Sora I; Uhl GR; Nagase H; Tseng LF
    Neuroscience; 2002; 115(3):715-21. PubMed ID: 12435410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of gonadal hormones on mu-opioid-stimulated [³⁵S]GTPγS binding and morphine-mediated antinociception in male and female Sprague-Dawley rats.
    Peckham EM; Graves SM; Jutkiewicz E; Becker JB; Traynor JR
    Psychopharmacology (Berl); 2011 Dec; 218(3):483-92. PubMed ID: 21607564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mu opioid receptor coupling to Gi/o proteins increases during postnatal development in rat brain.
    Talbot JN; Happe HK; Murrin LC
    J Pharmacol Exp Ther; 2005 Aug; 314(2):596-602. PubMed ID: 15860573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of [Dmt1]DALDA and DAMGO in binding and G protein activation at mu, delta, and kappa opioid receptors.
    Zhao GM; Qian X; Schiller PW; Szeto HH
    J Pharmacol Exp Ther; 2003 Dec; 307(3):947-54. PubMed ID: 14534366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and anatomical localization of mu opioid receptors in the striatum, amygdala, and extended amygdala of the nonhuman primate.
    Daunais JB; Letchworth SR; Sim-Selley LJ; Smith HR; Childers SR; Porrino LJ
    J Comp Neurol; 2001 May; 433(4):471-85. PubMed ID: 11304712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of guanosine-5'-o-(3-[35S]thio)triphosphate binding in digitonin-permeabilized C6 rat glioma cells: evidence for an organized association of mu-opioid receptors and G protein.
    Alt A; McFadyen IJ; Fan CD; Woods JH; Traynor JR
    J Pharmacol Exp Ther; 2001 Jul; 298(1):116-21. PubMed ID: 11408532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mu and kappa1 opioid-stimulated [35S]guanylyl-5'-O-(gamma-thio)-triphosphate binding in cynomolgus monkey brain.
    Sim-Selley LJ; Daunais JB; Porrino LJ; Childers SR
    Neuroscience; 1999; 94(2):651-62. PubMed ID: 10579225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mu-Opioid receptor-stimulated guanosine-5'-O-(gamma-thio)-triphosphate binding in rat thalamus and cultured cell lines: signal transduction mechanisms underlying agonist efficacy.
    Selley DE; Sim LJ; Xiao R; Liu Q; Childers SR
    Mol Pharmacol; 1997 Jan; 51(1):87-96. PubMed ID: 9016350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential desensitization of mu- and delta- opioid receptors in selected neural pathways following chronic morphine treatment.
    Noble F; Cox BM
    Br J Pharmacol; 1996 Jan; 117(1):161-9. PubMed ID: 8825358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain region- and sex-specific alterations in DAMGO-stimulated [(35) S]GTPγS binding in mice with Oprm1 A112G.
    Wang YJ; Huang P; Blendy JA; Liu-Chen LY
    Addict Biol; 2014 May; 19(3):354-61. PubMed ID: 22862850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic exposure to mu-opioid agonists produces constitutive activation of mu-opioid receptors in direct proportion to the efficacy of the agonist used for pretreatment.
    Liu JG; Prather PL
    Mol Pharmacol; 2001 Jul; 60(1):53-62. PubMed ID: 11408600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of mu opioid receptor binding to activation of G-proteins in specific rat brain regions.
    Maher CE; Selley DE; Childers SR
    Biochem Pharmacol; 2000 Jun; 59(11):1395-401. PubMed ID: 10751548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of morphine withdrawal on micro-opioid receptor-stimulated guanylyl 5'-[gamma-[35S]thio]-triphosphate autoradiography in rat brain.
    Kirschke C; Schadrack J; Zieglgänsberger W; Spanagel R
    Eur J Pharmacol; 2002 Jun; 446(1-3):43-51. PubMed ID: 12098584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [(35)S]GTPγS binding and opioid tolerance and efficacy in mouse spinal cord.
    Madia PA; Navani DM; Yoburn BC
    Pharmacol Biochem Behav; 2012 Mar; 101(1):155-65. PubMed ID: 22108651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central HIV-1 Tat exposure elevates anxiety and fear conditioned responses of male mice concurrent with altered mu-opioid receptor-mediated G-protein activation and β-arrestin 2 activity in the forebrain.
    Hahn YK; Paris JJ; Lichtman AH; Hauser KF; Sim-Selley LJ; Selley DE; Knapp PE
    Neurobiol Dis; 2016 Aug; 92(Pt B):124-36. PubMed ID: 26845176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.