These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 12654802)

  • 1. Role of glutathione in macrophage control of mycobacteria.
    Venketaraman V; Dayaram YK; Amin AG; Ngo R; Green RM; Talaue MT; Mann J; Connell ND
    Infect Immun; 2003 Apr; 71(4):1864-71. PubMed ID: 12654802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a glutathione metabolic mutant of Mycobacterium tuberculosis and its resistance to glutathione and nitrosoglutathione.
    Dayaram YK; Talaue MT; Connell ND; Venketaraman V
    J Bacteriol; 2006 Feb; 188(4):1364-72. PubMed ID: 16452418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNF-alpha controls intracellular mycobacterial growth by both inducible nitric oxide synthase-dependent and inducible nitric oxide synthase-independent pathways.
    Bekker LG; Freeman S; Murray PJ; Ryffel B; Kaplan G
    J Immunol; 2001 Jun; 166(11):6728-34. PubMed ID: 11359829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X(7)-dependent process inducing bacterial death by phagosome-lysosome fusion.
    Fairbairn IP; Stober CB; Kumararatne DS; Lammas DA
    J Immunol; 2001 Sep; 167(6):3300-7. PubMed ID: 11544318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early inhibition of mycobacterial growth by human alveolar macrophages is not due to nitric oxide.
    Aston C; Rom WN; Talbot AT; Reibman J
    Am J Respir Crit Care Med; 1998 Jun; 157(6 Pt 1):1943-50. PubMed ID: 9620931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide regulation of L-arginine uptake in murine and human macrophages.
    Venketaraman V; Talaue MT; Dayaram YK; Peteroy-Kelly MA; Bu W; Connell ND
    Tuberculosis (Edinb); 2003; 83(5):311-8. PubMed ID: 12972344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection.
    Miller BH; Fratti RA; Poschet JF; Timmins GS; Master SS; Burgos M; Marletta MA; Deretic V
    Infect Immun; 2004 May; 72(5):2872-8. PubMed ID: 15102799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria.
    Jung JY; Madan-Lala R; Georgieva M; Rengarajan J; Sohaskey CD; Bange FC; Robinson CM
    Infect Immun; 2013 Sep; 81(9):3198-209. PubMed ID: 23774601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of the KdpF membrane peptide in Mycobacterium bovis BCG results in reduced intramacrophage growth and altered cording morphology.
    Gannoun-Zaki L; Alibaud L; Carrère-Kremer S; Kremer L; Blanc-Potard AB
    PLoS One; 2013; 8(4):e60379. PubMed ID: 23577107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A peptide permease mutant of Mycobacterium bovis BCG resistant to the toxic peptides glutathione and S-nitrosoglutathione.
    Green RM; Seth A; Connell ND
    Infect Immun; 2000 Feb; 68(2):429-36. PubMed ID: 10639400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Effects of Mycobacterium bovis BCG on Macrophages and Dendritic Cells from Murine Spleen.
    Xu Z; Meng C; Qiang B; Gu H; Sun L; Yin Y; Pan Z; Chen X; Jiao X
    Int J Mol Sci; 2015 Oct; 16(10):24127-38. PubMed ID: 26473844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerosol infection of mice with recombinant BCG secreting murine IFN-gamma partially reconstitutes local protective immunity.
    Moreira AL; Tsenova L; Murray PJ; Freeman S; Bergtold A; Chiriboga L; Kaplan G
    Microb Pathog; 2000 Sep; 29(3):175-85. PubMed ID: 10968949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipterinyl calcium pentahydrate inhibits intracellular mycobacterial growth in human monocytes via the C-C chemokine MIP-1β and nitric oxide.
    Sakala IG; Eickhoff CS; Blazevic A; Moheno P; Silver RF; Hoft DF
    Infect Immun; 2013 Jun; 81(6):1974-83. PubMed ID: 23509148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production.
    Li M; Wang J; Fang Y; Gong S; Li M; Wu M; Lai X; Zeng G; Wang Y; Yang K; Huang X
    Sci Rep; 2016 Mar; 6():23351. PubMed ID: 27025258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative evaluation of in vitro human macrophage models for mycobacterial infection study.
    Mendoza-Coronel E; Castañón-Arreola M
    Pathog Dis; 2016 Aug; 74(6):. PubMed ID: 27307103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of NG-monomethyl-L-arginine(LNMMA), an NO-synthase blocker on the survival of intracellular BCG within human monocyte-derived macrophages.
    Fazal N
    Biochem Mol Biol Int; 1996 Nov; 40(5):1033-46. PubMed ID: 8955894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SecA2 secretion factor of Mycobacterium tuberculosis promotes growth in macrophages and inhibits the host immune response.
    Kurtz S; McKinnon KP; Runge MS; Ting JP; Braunstein M
    Infect Immun; 2006 Dec; 74(12):6855-64. PubMed ID: 17030572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-155 induction by Mycobacterium bovis BCG enhances ROS production through targeting SHIP1.
    Wang J; Wu M; Wen J; Yang K; Li M; Zhan X; Feng L; Li M; Huang X
    Mol Immunol; 2014 Nov; 62(1):29-36. PubMed ID: 24937178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections.
    Brennan RE; Russell K; Zhang G; Samuel JE
    Infect Immun; 2004 Nov; 72(11):6666-75. PubMed ID: 15501800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional transitions in macrophages during in vivo infection with Mycobacterium bovis bacillus Calmette-Guérin.
    Hamerman JA; Aderem A
    J Immunol; 2001 Aug; 167(4):2227-33. PubMed ID: 11490009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.