BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 12655015)

  • 1. Conserved sequence elements associated with exon skipping.
    Miriami E; Margalit H; Sperling R
    Nucleic Acids Res; 2003 Apr; 31(7):1974-83. PubMed ID: 12655015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic analysis of intronic sequences downstream of 5' splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation.
    Aznarez I; Barash Y; Shai O; He D; Zielenski J; Tsui LC; Parkinson J; Frey BJ; Rommens JM; Blencowe BJ
    Genome Res; 2008 Aug; 18(8):1247-58. PubMed ID: 18456862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analysis of splicing errors and mutations in human transcripts.
    Kurmangaliyev YZ; Gelfand MS
    BMC Genomics; 2008 Jan; 9():13. PubMed ID: 18194514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A network of conserved co-occurring motifs for the regulation of alternative splicing.
    Suyama M; Harrington ED; Vinokourova S; von Knebel Doeberitz M; Ohara O; Bork P
    Nucleic Acids Res; 2010 Dec; 38(22):7916-26. PubMed ID: 20702423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual intron conservation near tissue-regulated exons found by splicing microarrays.
    Sugnet CW; Srinivasan K; Clark TA; O'Brien G; Cline MS; Wang H; Williams A; Kulp D; Blume JE; Haussler D; Ares M
    PLoS Comput Biol; 2006 Jan; 2(1):e4. PubMed ID: 16424921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiated evolutionary rates in alternative exons and the implications for splicing regulation.
    Plass M; Eyras E
    BMC Evol Biol; 2006 Jun; 6():50. PubMed ID: 16792801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of alternatively skipped exons and splicing enhancers from exon junction arrays.
    Kechris K; Yang YH; Yeh RF
    BMC Genomics; 2008 Nov; 9():551. PubMed ID: 19021909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirements for mini-exon inclusion in potato invertase mRNAs provides evidence for exon-scanning interactions in plants.
    Simpson CG; Hedley PE; Watters JA; Clark GP; McQuade C; Machray GC; Brown JW
    RNA; 2000 Mar; 6(3):422-33. PubMed ID: 10744026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of cis-acting elements regulating the alternative splicing of human CFTR exon 9.
    Niksic M; Romano M; Buratti E; Pagani F; Baralle FE
    Hum Mol Genet; 1999 Dec; 8(13):2339-49. PubMed ID: 10556281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures.
    Graveley BR
    Cell; 2005 Oct; 123(1):65-73. PubMed ID: 16213213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved RNA cis-elements regulate alternative splicing of Lepidopteran doublesex.
    Wang XY; Zheng ZZ; Song HS; Xu YZ
    Insect Biochem Mol Biol; 2014 Jan; 44():1-11. PubMed ID: 24239545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intronic polypyrimidine-rich element downstream of the donor site modulates cystic fibrosis transmembrane conductance regulator exon 9 alternative splicing.
    Zuccato E; Buratti E; Stuani C; Baralle FE; Pagani F
    J Biol Chem; 2004 Apr; 279(17):16980-8. PubMed ID: 14966131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive computational characterization of conserved mammalian intronic sequences reveals conserved motifs associated with constitutive and alternative splicing.
    Voelker RB; Berglund JA
    Genome Res; 2007 Jul; 17(7):1023-33. PubMed ID: 17525134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atypical 5' splice sites cause CFTR exon 9 to be vulnerable to skipping.
    Hefferon TW; Broackes-Carter FC; Harris A; Cutting GR
    Am J Hum Genet; 2002 Aug; 71(2):294-303. PubMed ID: 12068373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis identifies exonic splicing regulatory sequences--The complex definition of enhancers and silencers.
    Goren A; Ram O; Amit M; Keren H; Lev-Maor G; Vig I; Pupko T; Ast G
    Mol Cell; 2006 Jun; 22(6):769-781. PubMed ID: 16793546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementary intron sequence motifs associated with human exon repetition: a role for intragenic, inter-transcript interactions in gene expression.
    Dixon RJ; Eperon IC; Samani NJ
    Bioinformatics; 2007 Jan; 23(2):150-5. PubMed ID: 17105720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions among SR proteins, an exonic splicing enhancer, and a lentivirus Rev protein regulate alternative splicing.
    Gontarek RR; Derse D
    Mol Cell Biol; 1996 May; 16(5):2325-31. PubMed ID: 8628299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing.
    Das D; Clark TA; Schweitzer A; Yamamoto M; Marr H; Arribere J; Minovitsky S; Poliakov A; Dubchak I; Blume JE; Conboy JG
    Nucleic Acids Res; 2007; 35(14):4845-57. PubMed ID: 17626050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intronic sequences flanking alternatively spliced exons are conserved between human and mouse.
    Sorek R; Ast G
    Genome Res; 2003 Jul; 13(7):1631-7. PubMed ID: 12840041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two exonic elements in the flanking constitutive exons control the alternative splicing of the alpha exon of the ZO-1 pre-mRNA.
    Martínez-Contreras R; Galindo JM; Aguilar-Rojas A; Valdés J
    Biochim Biophys Acta; 2003 Nov; 1630(2-3):71-83. PubMed ID: 14654237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.