These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12655017)

  • 21. OSCAR: one-class SVM for accurate recognition of cis-elements.
    Jiang B; Zhang MQ; Zhang X
    Bioinformatics; 2007 Nov; 23(21):2823-8. PubMed ID: 17921174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes.
    Zambelli F; Pesole G; Pavesi G
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W247-52. PubMed ID: 19487240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing the GATA-3 position weight matrix to improve the identification of novel binding sites.
    Nandi S; Ioshikhes I
    BMC Genomics; 2012 Aug; 13():416. PubMed ID: 22913572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two different classes of co-occurring motif pairs found by a novel visualization method in human promoter regions.
    Murakami K; Imanishi T; Gojobori T; Nakai K
    BMC Genomics; 2008 Mar; 9():112. PubMed ID: 18312685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reliable scaling of position weight matrices for binding strength comparisons between transcription factors.
    Ma X; Ezer D; Navarro C; Adryan B
    BMC Bioinformatics; 2015 Aug; 16():265. PubMed ID: 26289072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding site graphs: a new graph theoretical framework for prediction of transcription factor binding sites.
    Reddy TE; DeLisi C; Shakhnovich BE
    PLoS Comput Biol; 2007 May; 3(5):e90. PubMed ID: 17500587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. InMoDe: tools for learning and visualizing intra-motif dependencies of DNA binding sites.
    Eggeling R; Grosse I; Grau J
    Bioinformatics; 2017 Feb; 33(4):580-582. PubMed ID: 28035026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Creating PWMs of transcription factors using 3D structure-based computation of protein-DNA free binding energies.
    Alamanova D; Stegmaier P; Kel A
    BMC Bioinformatics; 2010 May; 11():225. PubMed ID: 20438625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SiTaR: a novel tool for transcription factor binding site prediction.
    Fazius E; Shelest V; Shelest E
    Bioinformatics; 2011 Oct; 27(20):2806-11. PubMed ID: 21893518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Logo2PWM: a tool to convert sequence logo to position weight matrix.
    Gao Z; Liu L; Ruan J
    BMC Genomics; 2017 Oct; 18(Suppl 6):709. PubMed ID: 28984206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient algorithm for the identification of structured motifs in DNA promoter sequences.
    Carvalho AM; Freitas AT; Oliveira AL; Sagot MF
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(2):126-40. PubMed ID: 17048399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes.
    Marinescu VD; Kohane IS; Riva A
    BMC Bioinformatics; 2005 Mar; 6():79. PubMed ID: 15799782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CompMoby: comparative MobyDick for detection of cis-regulatory motifs.
    Chaivorapol C; Melton C; Wei G; Yeh RF; Ramalho-Santos M; Blelloch R; Li H
    BMC Bioinformatics; 2008 Oct; 9():455. PubMed ID: 18950538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flanking sequence context-dependent transcription factor binding in early Drosophila development.
    Stringham JL; Brown AS; Drewell RA; Dresch JM
    BMC Bioinformatics; 2013 Oct; 14():298. PubMed ID: 24093548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of co-occurring transcription factor binding sites from DNA sequence using clustered position weight matrices.
    Oh YM; Kim JK; Choi S; Yoo JY
    Nucleic Acids Res; 2012 Mar; 40(5):e38. PubMed ID: 22187154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CONREAL: conserved regulatory elements anchored alignment algorithm for identification of transcription factor binding sites by phylogenetic footprinting.
    Berezikov E; Guryev V; Plasterk RH; Cuppen E
    Genome Res; 2004 Jan; 14(1):170-8. PubMed ID: 14672977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Turnover of binding sites for transcription factors involved in early Drosophila development.
    Costas J; Casares F; Vieira J
    Gene; 2003 May; 310():215-20. PubMed ID: 12801649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De-novo discovery of differentially abundant transcription factor binding sites including their positional preference.
    Keilwagen J; Grau J; Paponov IA; Posch S; Strickert M; Grosse I
    PLoS Comput Biol; 2011 Feb; 7(2):e1001070. PubMed ID: 21347314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PROMO: detection of known transcription regulatory elements using species-tailored searches.
    Messeguer X; Escudero R; Farré D; Núñez O; Martínez J; Albà MM
    Bioinformatics; 2002 Feb; 18(2):333-4. PubMed ID: 11847087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. STOP: searching for transcription factor motifs using gene expression.
    Hertzberg L; Izraeli S; Domany E
    Bioinformatics; 2007 Jul; 23(14):1737-43. PubMed ID: 17488754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.