BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 12655019)

  • 1. Self-association and conformational properties of RAG1: implications for formation of the V(D)J recombinase.
    Godderz LJ; Rahman NS; Risinger GM; Arbuckle JL; Rodgers KK
    Nucleic Acids Res; 2003 Apr; 31(7):2014-23. PubMed ID: 12655019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RAG1-DNA binding in V(D)J recombination. Specificity and DNA-induced conformational changes revealed by fluorescence and CD spectroscopy.
    Ciubotaru M; Ptaszek LM; Baker GA; Baker SN; Bright FV; Schatz DG
    J Biol Chem; 2003 Feb; 278(8):5584-96. PubMed ID: 12488446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of two topologically independent domains in RAG1 and their role in macromolecular interactions relevant to V(D)J recombination.
    Arbuckle JL; Fauss LA; Simpson R; Ptaszek LM; Rodgers KK
    J Biol Chem; 2001 Oct; 276(40):37093-101. PubMed ID: 11479318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2.
    Rodgers KK; Villey IJ; Ptaszek L; Corbett E; Schatz DG; Coleman JE
    Nucleic Acids Res; 1999 Jul; 27(14):2938-46. PubMed ID: 10390537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase.
    Kim DR; Dai Y; Mundy CL; Yang W; Oettinger MA
    Genes Dev; 1999 Dec; 13(23):3070-80. PubMed ID: 10601033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal dependency of RAG1 self-association properties.
    De P; Zhao S; Gwyn LM; Godderz LJ; Peak MM; Rodgers KK
    BMC Biochem; 2008 Jan; 9():5. PubMed ID: 18234093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-sequence-specific DNA binding mode of RAG1 is inhibited by RAG2.
    Zhao S; Gwyn LM; De P; Rodgers KK
    J Mol Biol; 2009 Apr; 387(3):744-58. PubMed ID: 19232525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The central domain of core RAG1 preferentially recognizes single-stranded recombination signal sequence heptamer.
    Peak MM; Arbuckle JL; Rodgers KK
    J Biol Chem; 2003 May; 278(20):18235-40. PubMed ID: 12644467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An interdomain boundary in RAG1 facilitates cooperative binding to RAG2 in formation of the V(D)J recombinase complex.
    Byrum JN; Zhao S; Rahman NS; Gwyn LM; Rodgers W; Rodgers KK
    Protein Sci; 2015 May; 24(5):861-73. PubMed ID: 25676158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analyses of RAG-RSS interactions and conformations revealed by atomic force microscopy.
    Pavlicek JW; Lyubchenko YL; Chang Y
    Biochemistry; 2008 Oct; 47(43):11204-11. PubMed ID: 18831563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A RAG1 and RAG2 tetramer complex is active in cleavage in V(D)J recombination.
    Bailin T; Mo X; Sadofsky MJ
    Mol Cell Biol; 1999 Jul; 19(7):4664-71. PubMed ID: 10373515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination.
    Dai Y; Wong B; Yen YM; Oettinger MA; Kwon J; Johnson RC
    Mol Cell Biol; 2005 Jun; 25(11):4413-25. PubMed ID: 15899848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RAG1 and RAG2 in V(D)J recombination and transposition.
    Fugmann SD
    Immunol Res; 2001; 23(1):23-39. PubMed ID: 11417858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination.
    Landree MA; Wibbenmeyer JA; Roth DB
    Genes Dev; 1999 Dec; 13(23):3059-69. PubMed ID: 10601032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Definition of minimal domains of interaction within the recombination-activating genes 1 and 2 recombinase complex.
    Aidinis V; Dias DC; Gomez CA; Bhattacharyya D; Spanopoulou E; Santagata S
    J Immunol; 2000 Jun; 164(11):5826-32. PubMed ID: 10820261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riches in RAGs: Revealing the V(D)J Recombinase through High-Resolution Structures.
    Rodgers KK
    Trends Biochem Sci; 2017 Jan; 42(1):72-84. PubMed ID: 27825771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The DDE motif in RAG-1 is contributed in trans to a single active site that catalyzes the nicking and transesterification steps of V(D)J recombination.
    Swanson PC
    Mol Cell Biol; 2001 Jan; 21(2):449-58. PubMed ID: 11134333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1.
    De P; Rodgers KK
    Immunol Rev; 2004 Aug; 200():70-82. PubMed ID: 15242397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct roles of RAG1 and RAG2 in binding the V(D)J recombination signal sequences.
    Akamatsu Y; Oettinger MA
    Mol Cell Biol; 1998 Aug; 18(8):4670-8. PubMed ID: 9671477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding how the V(D)J recombinase catalyzes transesterification: distinctions between DNA cleavage and transposition.
    Lu CP; Posey JE; Roth DB
    Nucleic Acids Res; 2008 May; 36(9):2864-73. PubMed ID: 18375979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.