BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 12655052)

  • 1. The role of copper and protons in heme-copper oxidases: kinetic study of an engineered heme-copper center in myoglobin.
    Sigman JA; Kim HK; Zhao X; Carey JR; Lu Y
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3629-34. PubMed ID: 12655052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of heme types in heme-copper oxidases: effects of replacing a heme b with a heme o mimic in an engineered heme-copper center in myoglobin.
    Wang N; Zhao X; Lu Y
    J Am Chem Soc; 2005 Nov; 127(47):16541-7. PubMed ID: 16305243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin.
    Zhao X; Yeung N; Wang Z; Guo Z; Lu Y
    Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases.
    Zhao X; Nilges MJ; Lu Y
    Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic reduction of NO to N2O by a designed heme copper center in myoglobin: implications for the role of metal ions.
    Zhao X; Yeung N; Russell BS; Garner DK; Lu Y
    J Am Chem Soc; 2006 May; 128(21):6766-7. PubMed ID: 16719438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An engineered heme-copper center in myoglobin: CO migration and binding.
    Nienhaus K; Olson JS; Nienhaus GU
    Biochim Biophys Acta; 2013 Sep; 1834(9):1824-31. PubMed ID: 23459127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis of histidine residues involved in Cu(II) binding and reduction by sperm whale myoglobin.
    Van Dyke BR; Bakan DA; Glover KA; Hegenauer JC; Saltman P; Springer BA; Sligar SG
    Proc Natl Acad Sci U S A; 1992 Sep; 89(17):8016-9. PubMed ID: 1518828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of copper ion in regulating ligand binding in a myoglobin-based cytochrome C oxidase model.
    Lu C; Zhao X; Lu Y; Rousseau DL; Yeh SR
    J Am Chem Soc; 2010 Feb; 132(5):1598-605. PubMed ID: 20070118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The main role of inner histidines in the molecular mechanism of myoglobin oxidation catalyzed by copper compounds.
    Postnikova GB; Moiseeva SA; Shekhovtsova EA
    Inorg Chem; 2010 Feb; 49(4):1347-54. PubMed ID: 20088488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of the His-heme Fe2+-NO species in the reduction of NO to N2O by ba3-oxidase from thermus thermophilus.
    Pinakoulaki E; Ohta T; Soulimane T; Kitagawa T; Varotsis C
    J Am Chem Soc; 2005 Nov; 127(43):15161-7. PubMed ID: 16248657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and reactions of myoglobin mutants bearing both proximal cysteine ligand and hydrophobic distal cavity: protein models for the active site of P-450.
    Matsui T; Nagano S; Ishimori K; Watanabe Y; Morishima I
    Biochemistry; 1996 Oct; 35(40):13118-24. PubMed ID: 8855949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into a low-spin myoglobin variant with bis-histidine coordination from molecular modeling.
    Lin YW
    Proteins; 2011 Mar; 79(3):679-84. PubMed ID: 21287605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of oxidation of oxymyoglobin by copper ions: comparison of sperm whale, horse, and pig myoglobins.
    Moiseeva SA; Postnikova GB
    Biochemistry (Mosc); 2001 Jul; 66(7):780-7. PubMed ID: 11563959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiological catalysis by myoglobin mutant with a genetically incorporated unnatural amino acid.
    Chand S; Ray S; Yadav P; Samanta S; Pierce BS; Perera R
    Biochem J; 2021 May; 478(9):1795-1808. PubMed ID: 33821889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The mechanism of oxymyoglobin oxidation by copper ions and complexes: myoglobins carboxymethylated and carboxyamidated at histidine residues].
    Shekhovtsova EA; Postnikova GB
    Biofizika; 2008; 53(4):562-72. PubMed ID: 18819271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular engineering of myoglobin: influence of residue 68 on the rate and the enantioselectivity of oxidation reactions catalyzed by H64D/V68X myoglobin.
    Yang HJ; Matsui T; Ozaki S; Kato S; Ueno T; Phillips GN; Fukuzumi S; Watanabe Y
    Biochemistry; 2003 Sep; 42(34):10174-81. PubMed ID: 12939145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splitting of the O-O bond at the heme-copper catalytic site of respiratory oxidases.
    Poiana F; von Ballmoos C; Gonska N; Blomberg MRA; Ädelroth P; Brzezinski P
    Sci Adv; 2017 Jun; 3(6):e1700279. PubMed ID: 28630929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new dinuclear heme-copper complex derived from functionalized protoporphyrin IX.
    Dallacosta C; Alves WA; da Costa Ferreira AM; Monzani E; Casella L
    Dalton Trans; 2007 Jun; (21):2197-206. PubMed ID: 17514341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.