These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12655068)

  • 1. How does cyanide inhibit superoxide reductase? Insight from synthetic FeIIIN4S model complexes.
    Shearer J; Fitch SB; Kaminsky W; Benedict J; Scarrow RC; Kovacs JA
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3671-6. PubMed ID: 12655068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic models for the cysteinate-ligated non-heme iron enzyme superoxide reductase: observation and structural characterization by XAS of an Fe(III)-OOH intermediate.
    Shearer J; Scarrow RC; Kovacs JA
    J Am Chem Soc; 2002 Oct; 124(39):11709-17. PubMed ID: 12296737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steric and electronic control over the reactivity of a thiolate-ligated Fe(II) complex with dioxygen and superoxide: reversible mu-oxo dimer formation.
    Theisen RM; Shearer J; Kaminsky W; Kovacs JA
    Inorg Chem; 2004 Nov; 43(24):7682-90. PubMed ID: 15554633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide Oxidation by a Thiolate-Ligated Iron Complex and Anion Inhibition.
    Dedushko MA; Pikul JH; Kovacs JA
    Inorg Chem; 2021 May; 60(10):7250-7261. PubMed ID: 33900756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic studies of Pyrococcus furiosus superoxide reductase: implications for active-site structures and the catalytic mechanism.
    Clay MD; Jenney FE; Hagedoorn PL; George GN; Adams MW; Johnson MK
    J Am Chem Soc; 2002 Feb; 124(5):788-805. PubMed ID: 11817955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometries and electronic structures of cyanide adducts of the non-heme iron active site of superoxide reductases: vibrational and ENDOR studies.
    Clay MD; Yang TC; Jenney FE; Kung IY; Cosper CA; Krishnan R; Kurtz DM; Adams MW; Hoffman BM; Johnson MK
    Biochemistry; 2006 Jan; 45(2):427-38. PubMed ID: 16401073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of thiolate ligands on reductive N-O bond activation. Probing the O2(-) binding site of a biomimetic superoxide reductase analogue and examining the proton-dependent reduction of nitrite.
    Villar-Acevedo G; Nam E; Fitch S; Benedict J; Freudenthal J; Kaminsky W; Kovacs JA
    J Am Chem Soc; 2011 Feb; 133(5):1419-27. PubMed ID: 21207999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the mechanism of formation of a thiolate-ligated Fe(III)-OOH.
    Nam E; Alokolaro PE; Swartz RD; Gleaves MC; Pikul J; Kovacs JA
    Inorg Chem; 2011 Mar; 50(5):1592-602. PubMed ID: 21284379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic Structure and Reactivity of Dioxygen-Derived Aliphatic Thiolate-Ligated Fe-Peroxo and Fe(IV) Oxo Compounds.
    Dedushko MA; Greiner MB; Downing AN; Coggins M; Kovacs JA
    J Am Chem Soc; 2022 May; 144(19):8515-8528. PubMed ID: 35522532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodic trends within a series of five-coordinate thiolate-ligated [MII(SMe2N4(tren))]+ (M = Mn, Fe, Co, Ni, Cu, Zn) complexes, including a rare example of a stable CuII-thiolate.
    Brines LM; Shearer J; Fender JK; Schweitzer D; Shoner SC; Barnhart D; Kaminsky W; Lovell S; Kovacs JA
    Inorg Chem; 2007 Oct; 46(22):9267-77. PubMed ID: 17867686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing reactivity via structural distortion.
    Schweitzer D; Shearer J; Rittenberg DK; Shoner SC; Ellison JJ; Loloee R; Lovell S; Barnhart D; Kovacs JA
    Inorg Chem; 2002 Jun; 41(12):3128-36. PubMed ID: 12054991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate.
    Villar-Acevedo G; Lugo-Mas P; Blakely MN; Rees JA; Ganas AS; Hanada EM; Kaminsky W; Kovacs JA
    J Am Chem Soc; 2017 Jan; 139(1):119-129. PubMed ID: 28033001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational tuning of the thiolate donor in model complexes of superoxide reductase: direct evidence for a trans influence in Fe(III)-OOR complexes.
    Namuswe F; Kasper GD; Sarjeant AA; Hayashi T; Krest CM; Green MT; Moënne-Loccoz P; Goldberg DP
    J Am Chem Soc; 2008 Oct; 130(43):14189-200. PubMed ID: 18837497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A functional model for the cysteinate-ligated non-heme iron enzyme superoxide reductase (SOR).
    Kitagawa T; Dey A; Lugo-Mas P; Benedict JB; Kaminsky W; Solomon E; Kovacs JA
    J Am Chem Soc; 2006 Nov; 128(45):14448-9. PubMed ID: 17090014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic characterization of the [Fe(His)(4)(Cys)] site in 2Fe-superoxide reductase from Desulfovibrio vulgaris.
    Clay MD; Emerson JP; Coulter ED; Kurtz DM; Johnson MK
    J Biol Inorg Chem; 2003 Jul; 8(6):671-82. PubMed ID: 12764688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A synthetic analogue of the active site of Fe-containing nitrile hydratase with carboxamido N and thiolato S as donors: synthesis, structure, and reactivities.
    Noveron JC; Olmstead MM; Mascharak PK
    J Am Chem Soc; 2001 Apr; 123(14):3247-59. PubMed ID: 11457060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, structure determination, and spectroscopic/computational characterization of a series of Fe(II)-thiolate model complexes: implications for Fe-S bonding in superoxide reductases.
    Fiedler AT; Halfen HL; Halfen JA; Brunold TC
    J Am Chem Soc; 2005 Feb; 127(6):1675-89. PubMed ID: 15701002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.
    Surawatanawong P; Tye JW; Hall MB
    Inorg Chem; 2010 Jan; 49(1):188-98. PubMed ID: 19968237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a tricationic trigonal bipyramidal iron(IV) cyanide complex, with a very high reduction potential, and its iron(II) and iron(III) congeners.
    England J; Farquhar ER; Guo Y; Cranswick MA; Ray K; Münck E; Que L
    Inorg Chem; 2011 Apr; 50(7):2885-96. PubMed ID: 21381646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the electronic properties of the low-spin cyano-ferric [Fe(N4)(Cys)] active sites of superoxide reductase and p450cam using ENDOR spectroscopy and DFT calculations.
    Yang TC; McNaughton RL; Clay MD; Jenney FE; Krishnan R; Kurtz DM; Adams MW; Johnson MK; Hoffman BM
    J Am Chem Soc; 2006 Dec; 128(51):16566-78. PubMed ID: 17177406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.