These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 12655458)
1. Brettanomyces bruxellensis: effect of oxygen on growth and acetic acid production. Aguilar Uscanga MG; Délia ML; Strehaiano P Appl Microbiol Biotechnol; 2003 Apr; 61(2):157-62. PubMed ID: 12655458 [TBL] [Abstract][Full Text] [Related]
2. Effect of temperature on Brettanomyces bruxellensis: metabolic and kinetic aspects. Brandam C; Castro-Martínez C; Délia ML; Ramón-Portugal F; Strehaiano P Can J Microbiol; 2008 Jan; 54(1):11-8. PubMed ID: 18388967 [TBL] [Abstract][Full Text] [Related]
3. Modeling of yeast Brettanomyces bruxellensis growth at different acetic acid concentrations under aerobic and anaerobic conditions. Yahara GA; Javier MA; Tulio MJ; Javier GR; Guadalupe AU Bioprocess Biosyst Eng; 2007 Nov; 30(6):389-95. PubMed ID: 17622565 [TBL] [Abstract][Full Text] [Related]
4. The importance of aeration strategy in fuel alcohol fermentations contaminated with Dekkera/Brettanomyces yeasts. Abbott DA; Ingledew WM Appl Microbiol Biotechnol; 2005 Nov; 69(1):16-21. PubMed ID: 15782293 [TBL] [Abstract][Full Text] [Related]
5. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Su YK; Willis LB; Jeffries TW Biotechnol Bioeng; 2015 Mar; 112(3):457-69. PubMed ID: 25164099 [TBL] [Abstract][Full Text] [Related]
6. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Alfenore S; Cameleyre X; Benbadis L; Bideaux C; Uribelarrea JL; Goma G; Molina-Jouve C; Guillouet SE Appl Microbiol Biotechnol; 2004 Feb; 63(5):537-42. PubMed ID: 12879304 [TBL] [Abstract][Full Text] [Related]
7. Study of process variables in industrial acetic fermentation by a continuous pilot fermentor and response surfaces. Garrido-Vidal D; Pizarro C; González-Sáiz JM Biotechnol Prog; 2003; 19(5):1468-79. PubMed ID: 14524708 [TBL] [Abstract][Full Text] [Related]
8. Growth rates of Dekkera/Brettanomyces yeasts hinder their ability to compete with Saccharomyces cerevisiae in batch corn mash fermentations. Abbott DA; Hynes SH; Ingledew WM Appl Microbiol Biotechnol; 2005 Mar; 66(6):641-7. PubMed ID: 15538553 [TBL] [Abstract][Full Text] [Related]
9. A physiological and enzymatic study of Debaryomyces hansenii growth on xylose- and oxygen-limited chemostats. Nobre A; Duarte LC; Roseiro JC; Gírio FM Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):509-16. PubMed ID: 12172618 [TBL] [Abstract][Full Text] [Related]
10. The ethanol tolerance of Pachysolen tannophilus in fermentation on xylose. Zhao L; Yu J; Zhang X; Tan T Appl Biochem Biotechnol; 2010 Jan; 160(2):378-85. PubMed ID: 18651246 [TBL] [Abstract][Full Text] [Related]
11. Carbon dioxide stimulates the production of amylovorin L by Lactobacillus amylovorus DCE 471, while enhanced aeration causes biphasic kinetics of growth and bacteriocin production. Neysens P; De Vuyst L Int J Food Microbiol; 2005 Nov; 105(2):191-202. PubMed ID: 16087265 [TBL] [Abstract][Full Text] [Related]
12. Effect of aeration rate on the alcoholic fermentation of whey by Kluyveromyces fragilis. Varela H; Ferrari MD; Loperena L; Lareo C Microbiologia; 1992 Apr; 8(1):14-20. PubMed ID: 1605917 [TBL] [Abstract][Full Text] [Related]
13. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor. Belo I; Pinheiro R; Mota M Biotechnol Prog; 2003; 19(2):665-71. PubMed ID: 12675615 [TBL] [Abstract][Full Text] [Related]
14. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G; Younesi H; Syahidah Ku Ismail K Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [TBL] [Abstract][Full Text] [Related]
15. Physiological and oenological traits of different Dekkera/Brettanomyces bruxellensis strains under wine-model conditions. Vigentini I; Romano A; Compagno C; Merico A; Molinari F; Tirelli A; Foschino R; Volonterio G FEMS Yeast Res; 2008 Nov; 8(7):1087-96. PubMed ID: 18565109 [TBL] [Abstract][Full Text] [Related]
16. Carbon material and bioenergetic balances of xylitol production from corncobs by Debaryomyces hansenii. Rivas B; Torre P; Domínguez JM; Perego P; Converti A; Parajó JC Biotechnol Prog; 2003; 19(3):706-13. PubMed ID: 12790628 [TBL] [Abstract][Full Text] [Related]
17. Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Carvalho W; Silva SS; Converti A; Vitolo M Biotechnol Bioeng; 2002 Jul; 79(2):165-9. PubMed ID: 12115432 [TBL] [Abstract][Full Text] [Related]
18. Carbon dioxide inhibition of yeast growth in biomass production. Chen SL; Gutmains F Biotechnol Bioeng; 1976 Oct; 18(10):1455-62. PubMed ID: 786407 [TBL] [Abstract][Full Text] [Related]
19. Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Ren LJ; Ji XJ; Huang H; Qu L; Feng Y; Tong QQ; Ouyang PK Appl Microbiol Biotechnol; 2010 Aug; 87(5):1649-56. PubMed ID: 20445973 [TBL] [Abstract][Full Text] [Related]
20. Acetate and ethanol production from H2 and CO2 by Moorella sp. using a repeated batch culture. Sakai S; Nakashimada Y; Inokuma K; Kita M; Okada H; Nishio N J Biosci Bioeng; 2005 Mar; 99(3):252-8. PubMed ID: 16233785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]