These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12656288)

  • 1. Ground water flow in a desert basin: challenges of simulating transport of dissolved chromium.
    Andrews CB; Neville CJ
    Ground Water; 2003; 41(2):219-26. PubMed ID: 12656288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ground water budget analysis and cross-formational leakage in an arid basin.
    Hutchison WR; Hibbs BJ
    Ground Water; 2008; 46(3):384-95. PubMed ID: 18384598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of flow and contaminant transport in coupled stream-aquifer systems.
    Hussein M; Schwartz FW
    J Contam Hydrol; 2003 Aug; 65(1-2):41-64. PubMed ID: 12855200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of submarine ground water discharge to a marine estuary: Biscayne Bay, Florida.
    Langevin CD
    Ground Water; 2003; 41(6):758-71. PubMed ID: 14649859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foreword: ground water in arid zones.
    Hibbs BJ
    Ground Water; 2008; 46(3):345-8. PubMed ID: 18384600
    [No Abstract]   [Full Text] [Related]  

  • 6. Using MODFLOW 2000 to model ET and recharge for shallow ground water problems.
    Doble RC; Simmons CT; Walker GR
    Ground Water; 2009; 47(1):129-35. PubMed ID: 18624693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling of saline water transport in the lower Nam Kam Basin, Amphoe That Phanom, Changwat Nakhon Phanom, Thailand.
    Srisuk K; Sriboonlue V; Buaphan C; Archvichai L; Youngme W; Satarak P; Jaruchaikul S
    Water Sci Technol; 2001; 44(7):157-64. PubMed ID: 11724482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting natural attenuation of xylene in groundwater using a numerical model.
    Schäfer W
    J Contam Hydrol; 2001 Nov; 52(1-4):57-83. PubMed ID: 11695746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling flow to leachate wells in landfills.
    Al-Thani AA; Beaven RP; White JK
    Waste Manag; 2004; 24(3):271-6. PubMed ID: 15016416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large scale groundwater flow and hexavalent chromium transport modeling under current and future climatic conditions: the case of Asopos River Basin.
    Dokou Z; Karagiorgi V; Karatzas GP; Nikolaidis NP; Kalogerakis N
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5307-21. PubMed ID: 26564185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eolian transport of geogenic hexavalent chromium to ground water.
    Wood WW; Clark D; Imes JL; Councell TB
    Ground Water; 2010; 48(1):19-29. PubMed ID: 19563424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ treatment of chromium-contaminated groundwater.
    Fruchter J
    Environ Sci Technol; 2002 Dec; 36(23):464A-472A. PubMed ID: 12523403
    [No Abstract]   [Full Text] [Related]  

  • 14. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites.
    Farmer JG; Thomas RP; Graham MC; Geelhoed JS; Lumsdon DG; Paterson E
    J Environ Monit; 2002 Apr; 4(2):235-43. PubMed ID: 11993762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogeologic controls on the transport and fate of nitrate in ground water beneath riparian buffer zones: results from thirteen studies across the United States.
    Puckett LJ
    Water Sci Technol; 2004; 49(3):47-53. PubMed ID: 15053098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial recharge through a thick, heterogeneous unsaturated zone.
    Izbicki JA; Flint AL; Stamos CL
    Ground Water; 2008; 46(3):475-88. PubMed ID: 18194322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating recharge distribution by incorporating runoff from mountainous areas in an alluvial basin in the Great Basin region of the southwestern United States.
    Stone DB; Moomaw CL; Davis A
    Ground Water; 2001; 39(6):807-18. PubMed ID: 11708447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.
    Kim J; Corapcioglu MY
    J Contam Hydrol; 2003 Aug; 65(1-2):137-58. PubMed ID: 12855205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations.
    Ben Simon R; Bernard S; Meurville C; Rebour V
    Ground Water; 2015; 53(6):967-71. PubMed ID: 25557038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the source of nitrate contamination in ground water below an agricultural site, Jeungpyeong, Korea.
    Jun SC; Bae GO; Lee KK; Chung HJ
    J Environ Qual; 2005; 34(3):804-15. PubMed ID: 15843643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.