These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12656355)

  • 1. Impedance measurements around grazing incidence for nonlocally reacting thin porous layers.
    Allard JF; Henry M; Gareton V; Jansens G; Lauriks W
    J Acoust Soc Am; 2003 Mar; 113(3):1210-5. PubMed ID: 12656355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free field measurements of the absorption coefficient for nonlocally reacting sound absorbing porous layers.
    Jansens G; Lauriks W; Vermeir G; Allard JF
    J Acoust Soc Am; 2002 Oct; 112(4):1327-34. PubMed ID: 12398439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of characteristic impedance and wave number of porous material using pulse-tube and transfer-matrix methods.
    Sun L; Hou H; Dong LY; Wan FR
    J Acoust Soc Am; 2009 Dec; 126(6):3049-56. PubMed ID: 20000918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound propagation above a porous road surface with extended reaction by boundary element method.
    Anfosso-Lédée F; Dangla P; Bérengier M
    J Acoust Soc Am; 2007 Aug; 122(2):731-6. PubMed ID: 17672623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of all six parameters of Johnson-Champoux-Allard-Lafarge model for acoustical porous materials from impedance tube measurements.
    Jaouen L; Gourdon E; Glé P
    J Acoust Soc Am; 2020 Oct; 148(4):1998. PubMed ID: 33138525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct discrete complex image method for sound field evaluation above a non-locally reacting layer.
    Eser M; Gurbuz C; Brandão E; Marburg S
    J Acoust Soc Am; 2021 Nov; 150(5):3509. PubMed ID: 34852590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roughness characterization of porous soil with acoustic backscatter.
    Oelze ML; Sabatier JM; Raspet R
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):1826-32. PubMed ID: 11386537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials.
    Song BH; Bolton JS
    J Acoust Soc Am; 2000 Mar; 107(3):1131-52. PubMed ID: 10738770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.
    Ottink M; Brunskog J; Jeong CH; Fernandez-Grande E; Trojgaard P; Tiana-Roig E
    J Acoust Soc Am; 2016 Jan; 139(1):41-52. PubMed ID: 26827003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensemble averaged surface normal impedance of material using an in-situ technique: preliminary study using boundary element method.
    Otsuru T; Tomiku R; Din NB; Okamoto N; Murakami M
    J Acoust Soc Am; 2009 Jun; 125(6):3784-91. PubMed ID: 19507960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels.
    Zhang B; Chen T; Zhao Y; Zhang W; Zhu J
    J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency.
    Wilson PS; Roy RA; Carey WM
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1895-910. PubMed ID: 15898635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.
    Zhou JX; Zhang XZ
    J Acoust Soc Am; 2012 Dec; 132(6):3698-705. PubMed ID: 23231101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The equivalent incidence angle for porous absorbers backed by a hard surface.
    Jeong CH; Brunskog J
    J Acoust Soc Am; 2013 Dec; 134(6):4590. PubMed ID: 25669271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backscatter from a limestone seafloor at 2-3.5 kHz: measurements and modeling.
    Soukup RJ; Gragg RF
    J Acoust Soc Am; 2003 May; 113(5):2501-14. PubMed ID: 12765370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustical measurement of the shear modulus for thin porous layers.
    Allard JF; Henrya M; Boeckx L; Leclaire P; Lauriks W
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1737-43. PubMed ID: 15898621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of sound propagation models used in bottom volume scattering studies.
    Li D; Tang D; Frisk GV
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2039-52. PubMed ID: 11108342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering.
    Dendooven J; Devloo-Casier K; Ide M; Grandfield K; Kurttepeli M; Ludwig KF; Bals S; Van Der Voort P; Detavernier C
    Nanoscale; 2014 Dec; 6(24):14991-8. PubMed ID: 25363826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How reproducible is the acoustical characterization of porous media?
    Pompoli F; Bonfiglio P; Horoshenkov KV; Khan A; Jaouen L; Bécot FX; Sgard F; Asdrubali F; D'Alessandro F; Hübelt J; Atalla N; Amédin CK; Lauriks W; Boeckx L
    J Acoust Soc Am; 2017 Feb; 141(2):945. PubMed ID: 28253657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.